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ABSTRACT

This article describes a number of methods for measuring morphological similarity
in music. A variety of metric equations are described which attempt to understand
certain kinds of musical and perceptual distances between pairs of shapes in any
musical parameter. Different techniques for applying these mefrics, such as
weightings, variants on each class of metric, and multidimensional and multimetric
combinations are also described, .

INTRODUCTION

How are two melodies more similar to each other than they are to a thifrd? What
are the principles and mechanisms by which composers and listeners create and
perceive formal similarity, not just in sets of pitches, but in duration series, large
scale forms, and perhaps even timbral data?

This article introduces techniques, called metrics, for measuring distances
between musical, perceptual, and compositional morphologies.' These functions
measure musical similarity. They suggest ways that morphologies of all sorts
(melodies, phrases, abstract shapes, tuning systems, duration series, sectional statis-
tics, larger forms) may be organized in terms of their distance from each other.

The measurement of musical morphological distance involves music-theoretic
ideas of creation, recognition, and the analysis of parametric variation and
transformation. Morphological parameters in music can include sets of pitches,
durations, harmonic relations, and sequences of timbral values (like spectra,
temporal values for attack and decay transients, and so on). Elements of a mor-
phology may consist of any parameter to which ordered values may be assigned,
or any formative parameters for musical composition, analysis, or cognition.

The results of morphological measurement might be used in a variety of

musical disciplines such as theory, analysis, and cognition, and especially
 composition. Many of the functions described below are intended to be generative:
rather than reflecting conventional theories of music organization, they can 1 suggest
new musical forms. -
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290 LARRY POLANSKY

Each metric is based on certain primitives of morphologlcal perception: contour,
magnitude, pairwise relationships. The metrics are also derived from simple
mathematical assumptions — fundamental interval functions, mean values, normali-
zation procedures — that provide formal descriptions of musical morphology as
well as techniques for using morphological ideas in composition.

MORPHOLOGY

- In Meta + Hodos, James Tenney (1961) distinguished between szatistical and
morphological features of temporal gestalt units (TGs) in music. In general,
statistical features of a TG are global, order-independent properties, like the mean,
range and standard deviation values for a parameter. These values are generally not
dependent on their order within the TG. Morphological features of a TG, on the
other hand, are described by the morphological “profile” of parametric values in
that TG. The order of events is the distinguishing feature between morphological
and statistical ones, yet it is difficult to measure morphology except in relation to
other morphologies.

Statistical measures like mean (;1) and standard deviation (G) are not affected
by the reordering of values in a sample (or TG). Measures of dependence like the
covariance and correlation coefficient do produce measures of morphological
similarity between two populations by considering corresponding relationships of
individual values to the mean, or standard deviation. Morphology tends to be more
relati'onal, and to some extent more taxonomical, in our experiernce. Although we'
can say the pitch mean of a TG is equal to n, in describing aspects of morphology
not only do we generally include more dimensions, but are more likely to do so
in a relational way. It is often difficult to absolutely measure aspects of a TG’s
morphology. Our descriptions are often something like: “the morphology of TG M
is closer to the morphology of TG N than it is to the morphology of TG 0}

In Tenney’s theory, statistical measures of parametﬁc profiles become

- parametric values themselves at a “higher level” in what he refers to as hierarchical
temporal gestalt formation.* Shape is a result of paramettic state differences at the
next lower hierarchical level. By measuring differences in “shape” at some level
through functions like the metrics proposed here, state differences at the next

- hierarchical level may also result (this is certainly the case at the acoustical level).
The morphological metrics described here assume not only that parametric el-
ements may be distinguished, and that their values may somehow be measured, but
that morphs exist on any hier/hol/heterarchical level. These metrics are meant to
apply to “lower levels” (like melodies and rhythmic sequences) as well as “higher
levels” (such as morphs consisting of the us or 8s of some parameter). They may
apply to what mlght be called micro- (timbre) and macro— (stylistic) levels as well.
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Music theory has often considered the recognition and invariance of morpholo-
gical units, though explicit reference to methodical morphological variation of
higher holarchical forms is rare. Aside from harmony, morphology (as in the case
of melodic and rhythmic variation) is one of the most important theoretical,
compositional and perceptual focuses of western music. In other musical cultures,
such as central Javanese court music, morphology plays an equally important role,
and could be said to often supersede harmonic relations. Many musical traditions
(including our own) recognize morphological invariance as an important structural
element. Melodies are recognizable under modal or tonal transposition, but also
when expanded or compressed in pitch range in many ways. However, only a few
aspects of morphological similarity have been formally described.

DEFINITION OF MORPHOLOGY

A morphology (morph) is an ordered set M. The elements of M are identified as
M,, where i goes from 1 to L. L is the length of M. When distinguishing between
the lengths of two different morphs, L is notated as M, ot N,. For the purposes of
this article, L is assumed to be 2.5

Morphs are ordered shapes, such as melodies, duration series, harmonic order-
ings, spectra, or statistical measures of formal segregation, like the succession of
mean pitches of sections of a piece (Tenney 1961; Tenney & Polansky 1980). In
most of the metrics defined here, it is crucial to be able to say that “M; comes
before M;”, or more simply, i < j. This is not necessarily temporal order, it may
be a ranking of any kind.® Elements of a morphology may be of any dimen-
sionality, for example, M = (XY:121, X392, X3y525..- %Y,z ). In this case, the M,
element = fxyz). ' '

MORPHOLOGICAL INVARIANCE

In this century composers have focussed a new attention on formal aspects -of
morphology. Schoenberg and other serialists codified transformations (T, I, R, and
combinations) to form an experimental canon. Forte, Babbitt, Rahn, Morris; Lewin
and others have made extraordinary contributions to revealing the underlying
morphological complexity of the 12-tone equal tempered system.

Schoenberg’s fundamental transformations (inversion and transposition) seem
to correspond (in large part) with human musical experience. Composers and
researchers (either in music theory or music cognition), however, do not always
share the same goals or motivations. For example, to state that in general the
retrograde of a melody is not considered more recognizable than a random
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pcrmutatlon of a melody (e.g., White 196()), does not necessarily lessen its function
as a compositional or theoretical tool.

~ Ideas of morphological invariance and similarity often emanate from cognitive
processes such as transposition and contour-preserving transformations. Other
nmorphological transformations, like retrogrades, may not. Schoenberg characterizes
his approach to morphological invariance in this way:

Tonality and rhythm provide for coherence in music; variation delivers all
that is grammatically necessary. I define variation as changing a number of
a unit’s feature, while preserving others. (from “Connection of Musical
Ideas”, (Schoenberg 1975)).%

Morphology, most often in the melodic context, has been an important area for
research in music cognition, theory and ethnomusicology. In recognition, recall,
and cognitive processing of melodic (and morphological) information, different
parameters are utilized in different ways. Length, register, loudness, timbre, and
articulation play significant roles in similarity judgements. Early studies by
Dowling (1982, 1978, 1972, 1971; Dowling & Fujitani 1981; Dowling & Hollombe
1977) discussed the different effects of “contour and scale” in melodic perception,
along with memory and recognition of various transformations and distortions of
melodic forms. These studies and others have demonstrated that these two
parameters are to some extent perceptually (and certainly compositionally)
isolatable, and that they are individually quite complex. Other studies in music
cognition, experimental psychology (such as Cuddy, Cohen & Miller 1979;
Edworthy 1983, 1985; Monahan & Carterette 1985), and ethnomusicology (such
as Adams 1976; Kolinski 1965a, b; Becker 1980; Seeger 1960) have considered
melodic transformation, judgements of contour and melodic similarity, and
taxonomies of contour and melodic form. Deliege (1987) tries to integrate contour
similarity into Lerdahl and Jackendoff’s (1983) “grouping preference rules”.

Recently, music theorists have begun to formally inVestigate contour and its role
in musical invariance. Morris (1989, 1992) has described the formal aspects of
contour, and others have made important contributions in the areas of contour -
invariance and inclusion criteria (Marvin & Laprade 1987; Marvin 1991; Freidman
1987, 1985; for an excellent survey, see Marvin 1990). Some of this author’s work
in contour and morphology-is represented in (Polansky & Bassein 1992; Polansky
1992a, 1987; Polansky & McKinney 1991).

The literature of atonal theory often deals with morpholog1cal similarity, even
though the fundamental element, the pc-set, usually imposes a particular order
upon a collection of actual pitches (as well as eliminating duplications).” For
example, consider Morris’ (1979—80) SIM function on two interval vectors and the

~ corresponding absolute similarity (ASIM) for different length (cardinality) pe-sefs:
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sim(R,S) = 6 |an— bnl (Morris SIM function)
n=}l .
ASIM(R,S) = SMR.S) (Morris ASIM function)
R+ V(S)

R, § are two pc-set-classes; a, is the number of occurrences of n in the interval
vector of S; and #V(R), #V(S) are the cardinalities of R and S respectively. These
functions resemble, in both .philosophy and technique, the ordered magnitude
metrics suggested below,. even including the way in which “different length”
morphs are handled.” Like the magnitude metrics below, Morris’ function(s) find
highervvalues for dissimilar set-classes, and low values for similar ones. Like most
of the metrics in this article, ASIM is scaled by definition from [0,1].

Hermann’s excellent survey and analytical study of similarity functions, (1994)
discusses “variants” on Morris’ SIM function, including Teitelbaum’s earliest study
(1965), and those of Lord (1981) and Isaacson (1990). Rahn (1979—80) provides
a comprehensive discussion of set-class similarity relationships under transposition
and inversion, including Lewin’s powerful mathematical generalization of set-class
similarity (1977, 1979—80). In his discussion of Regener’s “common-note function”
(Regener 1974), Rahn clarifies important issues of scaling and similarity functions
on sets of different length. Like Morris’ ASIM function (which Rahn- discusses),
the scaling techniques Rahn mentions are similar to ones proposed here. Like
Rahm was, T'am “... less interested in the numerical values of these functions than
in the concepts they embody”, but of course both the techniques and results are
important.

Other theorists have developed similarity measures within the context of atonal
music, some of which are on ordered pc-segments."! The use of order, nonas-
sumption of pitch classes, and the avoidance of the concept of inclusion and (T-,
I-, R-related) equivalence classes are important functional distinctions between the
techniques in this article and similarity functions described by the authors
mentioned above. :

Morphological metrics may measure any quantifiable parameter (including time-
and spectral-domain representations of sound). When they do describe pitch (I most
often use melodic examples because they are easiest to visualize) pitch-class

. Invariance operators (7, /, R etc.) and stylistically based assumptions of hannony
are not invoked. These metrics are intended to be as adaptable to the measurements
of different scales as to the comparison of rhythmic sequences; as useful in
comparing melodic contour as in comparing spectra.
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DISTANCE, SIMILARITY AND METRICS

The concept and measurement of distance is fundamental to formal theories of
perception (e.g., Attneave 1950; Shepard 1963, 1987; Krumhansl 1978), and to our
sense of the world. Without this idea, it is difficult to develop intuitive ideas of
similarity, movement and transformation. The simplest distance function, “equal
to or not equal to”," implies the ability to make a distinction between two objects
or gestalts. The perception that melody A is closer to melody B than it is to
melody C implicitly assumes that not only is similarity defined, but also degree of

similarity. Informally, similarity may be defined as the “inverse” of distance, since
" a distance of zero usually means equality (or equivalence).

‘Every distance function depends on a deeper concept: distinction. Fundamental
to the notion of distance is the ability to say that melody A is separate and
distinguishable from melody B. In order to say that two entities, objects, témporal
gestalts, events, points, or things are a certain distance apart, these things must first
be distinguishable. It will be assumed that all morphs discussed here are in some
way distinct entities. However, there is a difference between distinguishable and
equivalent points: two different melodies which are transpositions of each other are
equivalent under most similarity measures. This concept is central to' serial and
atonal theory, and is also important in the development of metrics (see the
comments on the identity criteria; below). '

METRICS

The words “distance” and “similarity”, useful in many contexts, are less well
defined than the mathematical notion of a metric, a relation on two points with
certain conditions. Not all distance functions are metrics, but all meirics are
essentially distance functions.

The usual mathematical definition of a metric is a real-numbered function on
a set § of the form d(a,b) = a, where:

Daz0 . ' "~ (non-negativity)
2)-d(a,b) = d(b,a) (symmetry)
3)d(a,b) = 0 iffa=1>0 (identity) -

4) d(a,b) < d(a,c) + d(c,b) (triangle inequality)
for all a, b, c elements of S. |

- 1) Non-negativity is intuitively necessary to preclude any form of directionalized
- distance or “vector”. Non-negativity is not a necessary assumption, it can be derived
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from conditions 2—4. The simplest definition of pitch interval — C up to G is the
same as G down to C (a fifth) — satisfies this condition. This measure between two
pitches is in fact a metric, like the standard absolute value metric on the integers.

2) Symmetry, or commutivity, says that the distance between a and b is the same
as the distance between b and a; the order of terms is inconsequential. There are
many situations in which it does not obtain, especially in distance functions which
model perception and the physical world. For example, consider the metric which
is the amount of ‘energy it takes to walk between any two places in San Francisco:
symmetry is confounded by gravity." Inclusion metrics are often asymmetrical: for
example, if the spectra of timbre A is included in the spectra of timbre B, d(4,B)
= 0, but d(B,A) # 0 because B is not included in A.

3) Identity, sometimes called “nondegeneracy” (Schreider 1974) says that o = 0
for d(ab) if and only if a and b are the “same point”. It provides a useful
definition for “same point”."* This is also a musically meaningful definition for
invariance: two morphs can be said to be the “same morph” under a given
metric.” In a metric which only considers ordered intra-element absolute value
difference's, two morphs related by inversion or transposition are the same.
Schoenberg’s 48-row forms, or Forte’s (unordered) set-classes are examples. Each
may be defined as _colléctions of set-classes which are the same collection under
some group of metrics (in serialism, those which are zero between a row and its
inversion, transposition or retrograde). Invariance means that some aspect of two
morphs (absolute intervals, signed intervals) is the same. '

The 48-row forms are not, however, the same rows. They are distinct points {a,
b, c,...] for which d(a,b) = 0, but a # b, seeming to violate the identity criteria. But
the concept of equality (a = b) is more primitive than that of metric equality
(d(a,b) = 0), the former referring to logical equality in the set upon ‘which the
metric is imposed.”® Metrics often “redefine” the underlying set to create
equivalence classes. Mathematically, it is not quite correct to say that for two row
classes, the “serial” metric represents transposition as a zero distance on the set of
all rows. That metric should first be defined on the sets of equivalence classes (or
- mathematically, quotient spaces), that we are, from a practical standpoint, inter-

ested in representing. In this case, it might be said that the difference between two
rows is some distance function “modulo transposition, inversion, and retrograde”.!?

Not all musical distance functions are metrics. For example, the -signed
difference between two pitches or pitch classes, (“ordered pitch-class interval” or
“directed interval”, e.g., i<6,9> = 3, i<9,6> = 9) is not a metric because of the
sign. The “unordered pitch interval” (e.g., ip{3,7} = ip{7,3] = 4) is a metric,
producing an absolute difference between the two pitches or pitch classes
irrespective of order (Morris 1991). ‘ '
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In the metrics below, these two steps are often conflated: taking metrics on
representations of morphology which form equivalence classes, and to some
extent, not cenforming precisely to the mathematical sense of the 1dent1ty criteria.
For example, the two morphs:

{5, 3, 7, 1} and {6, 5, 9, 2)

may be described as: Down, Up, Down. A metric on that description (the OLD,
described below) would find the two morphs equal, but the two morphs are not
equal in the undeilying set of all possible 4-element morphs. They are members
of an equivalence class recognized by a zero metric value, described by the
direction representation.

As another example, take the usual metric on the real numbers, where decimal
expansions are rounded to their “limits” (e.g., .99999... = 1). This is not equivalent
to saying that decimal expansions are equal (or indistinguishable) in the underlying
space. The set of points in a metric space is not inextricably linked to the metric
itself. By some other metric (defining a different metric space) they may not all
be equal.

4) The triangle inequality, is the “strongest” condition. In proving that a function
is a metric, the triangle inequality-is usually the most difficult condition to verify.
It says, in simple language, that “the shortest distance between two points is a
stiaight line”. The triangle inequality ensures a kind. of regularity to the metric
space without which behavior in the space would not correspond to intuitive
notions of distance.'® :

A metric and a set of points define a metric Space: “a set which possesses a
sensible notion of- ‘distance’” (Lederman & Vajda 1982, p. 505). There are many
common metrics on the integers, reals, and other sets, including the familiar
absolute value function on the integers and the Euclidean metric on the reals.
Particular metrics are often chosen in order to define what distance in some
given space truly means, in other words, what the space “looks like”. For example,
the “city-block” or “taxi-cab” metric on two-dimensional space (or higher
dimension) describes a space in which movement occurs along one dimension at
a time:

dab)=| x,~y |+ | x| (city-block metric)

where a = {x;x;} and b = {y,y,}. For example, on a violin from middle C at pp to
high E at Jf we have to “move” (perceptually, or as a performer) along the two
axes of pitch and amplitude, each of which may be done independently.
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The Euclidean metric (on two dimensions):

d(a,b)=¢ (=%, + (3, (Euclidean metric)

integrates dimensions, reflecting situations in which the natural movement is “across”
dimensions, as we envision physical space. The Euclidean and city-block metrics
are both examples of Minkowski metrics, and are written more generally as:

! : AR N
daby=(x,~y,|" | x,y,[H" - (Minkowski metric)

These two fundamental forms, which might be called the sum of absolute values
and the square root of the sum of squares are two different ways of assuring
positive values for distances between two points in 2-space. The Euclidean is used
more often in statistical measures like standard deviation and correlation
coefficient.

The relationship of the two metrics is (Shreider 1974):

\/(x1 _xz)z +011-y2)2 SI %, _le . ’)’1“)’ 2' , (Euclidean vs. city-block metric)
or more simply (by setting x, and y, equal to zero):
*/xé 32 < [x] +]y| (root of sum squares vs. sum of absolute values)

‘The hypotenuse is shorter than the sum of the sides: the triangle inequality. The
Euclidean metric is often called the L, metric, the city-block the L,, referring to
their relationship to the plane and the line, respectively.

The squared and absolute value forms have several important distinctions. The
- squared form is often mathematically preferred for its algebraic manipulability. The
two sides of the plus sign may be written out in long form, making it easier to
derive and transform equations.”® Algebraic expansion is more difficult for the
absolute value form. The squared form is also advantageous for continuous
functions: x; may be written as f{i), and squared and “rooted” without reference to
specific values for the function (also not the case with the absolute valué form).
The two forms produce highly correlated results. The squared form may be viewed
as a “circle” around a point, the absolute value form as a “90-degree rotated”
square inscribed within that circle (Kaplansky 1972). The absolute value is easier
to use in the case of simple, discrete metrics because it can be computed without
taking square roots. The squared form is useful in computer calculations, and in
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describing the relationship of magnitude metrics with the standard deviation and
correlation coefficient.*!

MORPHOLOGICAL METRICS
Morphological metrics are metrics d(M, N) on morphologies (morphs)

Morphological metrics generally utilize the distinguishing feature of morphs, that
they are ordered. Most of the metrics discussed below do not yield the same value
if the elements of one of the morphs are rearranged. This seems at first obvious,
but commonly used measures and relationships, especially in atonal and serialist
theory, do not necessarily reflect order” (like the Z-relationship, SC-inclusion, and
interval vectors). PC-sets are, in general, unordered, or more precisely, transformed
into a normal order.”® Order may refer to the temporal occurrence of a morph’s
elements or a ranking. For example, the pitches of a morph may be ordered by
their durations. ’

Morphological metrics may take advantage of some powerful properties of
metrics, with immediate compositional implications. For example, in designing
“mutation functions” between morphs (Polansky, Burk & Rosenboom 1987;
Polansky 1991) straight lines of “mutant morphs” between two morphs M and N
under a given metric can be given by the equation:

AMN) = (d(M,0) +d(O.N))

where O represents all morphs which satisfy the equality, and where generally,
depending on the length and “grain” (or resolution) of the nmetric, some small
difference is allowed between the two sides of the equation. ‘
Common metrics on real-valued functions are useful models for morphological
metrics. For example, given two real-valued continuous functions f{#) and g(z), over
“the range [m, nJ, two intuitive magnitude metrics are: '

d(x,y) = max{ | x(2) —y(t_)‘} (max or sup metric)
and
fml £H-g(®)| dt ‘ : (magnitude metric**).
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or a scaled version

["lror-g@lar
| m-n|

(magnitude metric scaled)

The max metric measures the maximum difference between two. functions, and
the magnitude metrics measure the average of point-by-point differences in the two
functions (Bryant 1985).” If the denominator of the magnitude metric scaled
function is multiplied by the result of the max metric on the same two functions,
the metric is “normalized” to the maximum range of the functions (as suggested
below for the discrete magnitude metrics). This metric might also be scaled by
the mean, standard deviation, or other measure of either/or both of the two
functions.

- Musically, it is often important to measure difference between the “change” in
two functions, which are generally discrete, not continious. In the context of atonal
set theory, this would be analogous to studying interval vectors rather than
common tone theorems (though they can of course be related). By replacing f{t)
and g(t) with their derivatives of any order, metrics are obtained which measure
the average magnitude difference of the corresponding rate of change of two
functions (again, for the 1st, 2nd, or nth derivative). For discrete functions
(morphs) the derivative is replaced by what may be called the first (2nd,... nth)
order difference function. For two morphs M, N, of length L the “(absolute)
magnitude metric” above becomes:

L
L ' : ’ E IMl-IViI '
3y |M,~N;| or, scaled by length: _‘il..__z___
i=1 '

Taking this metric on successive intra-morphological differences produces the OLM
(ordered linear magnitude) metric described below. This idea may be generalized
by the averaging of metrics on successive orders of the derivatives a simplified

version of the Sobalev norm (Lederman & Vajda 1982, p. 771), informally given
as: .26 '

dif.g) = [2 f ( @y - g(t)")z } : (simplified f‘Sobalev” metric)
i=0 .

where i indicates the order of the derivative of each function(f’ is the function

itself). This is the L, version. The L, version, averaged over the number of
derivatives, might be:
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n

d(fig)= =

In the discrete form, weighting the difference functions, the following version of
the OLM is obtained:

L)

: ZlM N

oty H ("Sobaley-OLM')
dMN)= = . ;

N0

where i is the order of difference function on M, N (by any notion of “difference”).
The length of M, N decreases by 1 each time. If i begins at 1, rather than 0, the
elements of M, N are excluded from the average (transpositions of melodlés, for
example, will have a distance of zero). ofi) is any Wweighting function indexed by
order of the difference function. N < L-1, where L is the length of M, N. The
weighting function allows for greater or lesser sensmvxty to activity in higher order
difference functions. In simpler terms, it allows for a degree of preferencg in
whether the metric reflects “rippling” or ovérall morphological shape.

INTERVAL

‘Because it is usually more important to consider a morph as a set of relative rather

than absolute values, most morphological metrics require some inner distance
function, or interval. The specific interval used can be left general in the metrlc s
definition in order to allow for variation.” '

For example, the OLM (Polansky 1987; described below), measures some
version of average absolute magnitude change between corresponding adjacent
elements of two morphs. Interval may be defined in the very specific sense of
measuring arithmetic change in a given parameter:

P‘

- ||m,-m

| NN

L-1

x+l

(OLM, no AY™®

it
—

3 {ﬂf(z)‘—g(t)"l} (city-bloék, averaged “Sobalev” meiric)‘
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or the root of the difference of squares form:

| SE \/(M};M+x)2" NN, - (OLM, no A, squared)®
=1 - L-1

where N and M are two morphs of length L, and N, and M; are the ith elements of
M and N. In general, I will discuss the absolute value forms of the magnitude
metrics, rather than the root of the difference of squared form (which I often refer
to as the squared form of the metric). I call both of these metrics “no A” because
in what follows specific interval calculations like those used above (linear
differences of adjacent elements), will tend to be replaced with a generalized A
Junction. ; .
The following shows the forms of the QLM on two short morphs, M, N, and
their first->* and second-order (absolute value) difference functions:

{1st. order absolute interval) (2nd order absolute interval)

¥ = {0,2,4,1,0} {2,2,3,1] {0,1,2}1

N = {2,3,0,4,1) [1,3,4,3] (2,1,1]

OLM, nc A(M,N) (lst ordexr) = (L+d+14+2)/4 = 1.28%
OLM, no A(M,N) (2nd oxder) = (2+0+1/3) Co= .00
OLM, no A® (1st order) = (V3 + N5 + 7 + ¥8)/4 = 2.360
OLM, no A? (2nd order) = (Y2 + 1)/3 = 0.804

Fig. 1. Morbh example.

This example is similar to the correlation coefficient of two sets, but holds
inversion invariant, resulting in positive values rather than [-1, 1]. .With this
interval, the OLM reflects a “dependence” in local linear movement rather than
dependence or independence about the means. Metrics on lower order difference
functions tend to be greater (more distant) than higher order ones, just as
successive derivatives of many functions tend to “flatten out”.
Absolute value (or equivalently, squared difference) intervals within morphs are
_often inappropriate. The specific interval used does not characterize or define the
metric form. For example, in comparing two duration or frequency series,
ratiometric intervals would likely be used (both within morphs and between
corresponding values of the two morphs). Specific interval functions can be chosen
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by the theorist or composer to measure specific types of musical change. I will
generally use A to signify a generalized interval function, as in the following
version of the OLM:

M.)-AW, m)
L-1

(OLM, general)

y 1o

The (OLM, no A) might represent an OLM metric using unordered pitch interval,
while the (OLM, general), the interval class (Morris 1991) if A is defined as:

= {min -}, (b-a}] (mod 12){ (interval class)

where a,b are two pitch classes defined in the usual way (mod 12). In this form,
the (OLM, general) results in values between [0,6], averaging the difference in
interval classes (0—6) between corresponding adjacent elements of the morphs.
- Multiplying the denominator by 6 normalizes the function to [0,1] (various
normalization and scaling procedures will be described below).

The “interval class (IC)” metric may be rewritten as:

L-1

E[ min{(M, —M l)modlfl M,_,-M)ymod 12} ~min{(N,-N,_)mod12,(N,_, N)modiil}]

(L-1)*6
(IC metric)

a variant on Morris’ SIM function (on non-normal form, unordered sets),
- generalizable to any modulus and, in fact, any notion of intervallic equwalence (not
just around the tritone).

Intervals may be characterized as signed or unsigned, arithmetic or ratiometric,
directional or magnitudinal. Signed intervals, not metrics themselves, reflect a
“greater than/less than” relationship, unsigned intervals do not (and are usually
metrics themselves). Directional intervals onmly measure “greater than/less
than/equal to” relationships, and magnitudinal ones, only the amount of change.’!

- Ratiometric intervals (which are not metrics) are generally more appropriate for
acoustlcal parameters (like frequency, amplitude, time) which have not already
been converted to psychoacoustic scales (pitch, loudness, rhythrmc values).
Psychoacoustic descriptions of acoustical phenomena tend to be the results of
ratiometric As themselves, though of course not always the ones we might want.
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Many other kinds of intervals are possible, including harmonic ones which
determine harmonic distance between two pitches (Chalmers 1993; Tenney 1987,
Barlow 1987). I have used harmonic interval functions in two pieces: Two
Children’s Sohgs for two bass winds (Polansky 1992b) and Roads to Chimacum
for string or mandolin quartet (Polansky 1993b). These pieces use harmonic
mutation functions which make use of harmonic lookup tables, and calculate
intervallic distance by “dereferencing” a particular interval from the desired
distance (Polansky 1992a). This table may be dynamically changed by the user,
and could be filled with values derived from standard harmonic distance functions.
Other composers, such as Barlow (1980, 1987), Tenney (1984, 1987), and Scholz
(1994) have recently made interesting use of harmonic metrics in their work.

Interval (A) can be a complicated or simple function, and obviously need not
be a metric itself (as in min). The choice of A depends on the given musical
parameter and the type of inter-element change being measured.

META-INTERVAL

The concept of generalized interval may be extended further fo the metrics
themselves. For example, in ordered linear metrics, the general form

I AM,-AN. l (meta-interval absolute value form)

has been .used most often. This is a simplified representation of the OLM. The
minus and absolute value signs are arbitrary, depending on musical context.
Variations on this form are seen below in various statistical versions of magnitude
metrics. Ratiometric, maxima, and other interval calculations are as possible in the
comparison of inter-morphological intervals as they are in the calculation of intra-
‘morphological ones (although of course not all intervals will result in metrics).

A may be generalized to what might be called meta-interval, or Y. v may be
any metric, such as ratio, max, and root of the difference of squares. This allows
for greater generality in inter-morphological interval calculation. The following
shows the use of y in simple metric equations: the OLM and ULM. The ULM, or
unordered linear magnitude metric is described in detail below. While the OLM
may be thought of as a generalized “mean of differences”, the ULM may be
thought of as the “difference of means”:

L-1

(A, AN)

i=]

(L~1)*(maxint)

(OLM, meta-interval form)
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where maxint-is the maximum A in M and N*

M1 N-1 ; .

Z AM) Z AN) (ULM, meta-interval form)
=1 i=1 ,

M,-1 = N-1

An example of a “ULM-style” metric from atonal set theory would be the absolute
value of the difference of the means of two interval vectors. The meta-interval
form of the ULM is similar to various forms of the standard deviation (see below,
under “Statistical Variations of Magnitude Metrics”). Meta-interval forms are
possible in all of the metrics described below, including direction metrics.

- INTERVAL CALCULATION INDICES

The notation M, allows for generalization of elements between which intervals are
taken; M; and some other index in M. Adjacent intervals are one form of
calculation between M, and M,,, or M, ,. Several other types of indices may also
be used. In statistics, intervals are often taken to the mean (1) of a sample. In the
equations. below for linear metrics, indices of the form AM, M,,) are generally
used. However, A(M, M,), AIM, M,,), AM, M), MM, M,,.), and A(M, M,) are
all useful interval index forms.

The adjacency interval (AI) of a metric may be any value < L. If Al = 2,
intervals are taken between every other value. In combinatorial metrics (metrics

- which measure a greater number of relationships than purely adjacent ones) this
may be further extended to both adjacency column interval and adjacency row
interval, which need not be the same. Al may change within a metric (for example,
shrinking towards the end).

Fundamental indexing means that intervals are taken to some value f which
may or may not be an element of the morph. If f = M, for some i, than i is called
a fundamental index. If f # M, for some i, than fis called a fundamental value or,
informally, phantom fundamental. A standard technique is to set the mean of the
intervals in a morph to be the phantom fundamental, relating magnitude metrics
to the correlation coefficient and standard deviation.

As an example of generalized indexing, the (OLM, general) can be rewritten
from AM, M,,) form (Al = 1), to AM, Mf) and A(M, f), the former using a
fundamental interval, the latter using a phantom fundamental. This might be
appropriate, for example, if all pitches in' M and N are viewed in harmonic
relationship to a specific pitch in M (M), not an element of N. '
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Different indexing systems may be used for each morph in a metric, The
notation may be generalized further by using M,,,. For example, the (OLM, meta--
interval form) may be rewritten as follows:

W(A(M;m)’ AN im)) (OLM, generalized interval)
(L-1)*(maxint)

L
=1

a mathematically useful form for expressing a canonical template for the OLM.%
Different interval indices, particularly fundamental indices, have been useful in
my own composition, especially in the designing of mutation Junctions which
transform one morph into another by a prescribed distance (like an inverse metric)
(Polansky 1992a; Polansky & McKinney 1991; Polansky, Burk & Rosenboom
1987). In the program Soundhack, which implements spectral mutation functions,
the user may take all intervals between adjacent. spectral frames, or to a user-
definable “fundamental” absolute amplitude value for a spectral frequency-bin
(Erbe 1994; Polansky & Erbe 1996). In my piece 51 Melodies... for two ‘guitars
and rock band (Polansky 1991), the pitch mutations take all intervals to a
fundamental of E, which may or may not appear in the melody. However, this
ensures that the melodies themselves all “relate” around that tonic center (Fig. 2).
* For combinatorial metrics where interval calculations on all or some subsets of
the possible pairwise relationships of a morph are required, a conceptually similar
standard indexing system may be used. Columns of combinatorial matrices are
treated as “nested inner loops” of the “outer loops” of rows (see Fig. 3).

* The top row contains the differences between the first and all succeeding
values. The “inner diagonal” (not the identity, but one diagonal higher) of the
matrix contains the adjacent linear intervals. The choice of which index to use for
“row and column” is arbitrary, but confusing if not kept consistent.* For the com-
binatorial metrics below, j is used for inner loops and i for the outer ones in the
following general form:

§ EL: A(M, M) (general combinatorial form)
#
i=1  ju=f+]

COMBINATORIAL AND LINEAR METRICS

Combinatorial and linear metrics differ in the number of inira-interval calcula-

tions.” The number of possible pairwise intervals or relations in a morph of length
L is:
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Fig. 2. Two pages from the score for 51 Melodies... (beginning with the Target, and
continuing on for several mutations).
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2 . . .
- L*-L (number of pairwise relationships)
m ) :

often called the second-order binomial coefficient of L.*® The degree of com-
binatoriality #L of a metric is the number of intra-morphological intervals used in
its calculations (#) scaled by the number of possible intervals,

e
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A(MerﬂI) AMiMiyg) o AM; M)
A (M1 +1r M1+2) A(Mi+1/ ML)

AMy-1. M)

e

.

Fig. 3. Combinatorial metric matrix.

H#IIL_=H#L

#L typically ranges from 2/L to 1, # from L-1 to L,_. I have called linear those
metrics where #I < L. Generally, for phantom fundamental or fundamental indices,
#L = L/L,, ot #L = 2/(L-1) for linear metrics. Similarly, #L= L-1/L, = 2/L when
adjacency intervals are used.”

A metric is combinatorial when L < #I < L, (or #L > 2/L). There is a wide
range of possibilities for # between L-/ and L. For example, only even-numbered
rows might be considered important in a morph’s interval matrix, or intervals
mlght be calculated between elements which are not more than two elements

“away”. On long morphs such as waveforms, some form of stochastic interval
sampling might be used. For simplicity’s sake, most of the equations in this article
use L, L-1, or L,, intervals. I have not attempted to generalize the indexing notation
to represent all these possibilities. However, this is easily done (in software, and
mathematlcaliy) by leavmg the concepts of index, adjacency, and fundamental as
variables. 0

A standard example from mathematical analysm of what I am callmg a

- combinatorial metric is given by:

d(M.Ny = max, . lM ] | (“matrix max-metric”)

where M,N are two matrices (Lederman & Vajda 1982).

The grain of a metric may be defined as one .over the number of possible
values that a metric may return (in terms of L). The grain of combinatorial metrics
is smaller (more sensitive) than linear ones. Compositionally, the grain of a metric
might be used to define what is meant by “continuity” in a metric space. That is,
two morphs are as “close as they can be without being the same” in a given
morphological metric space if they are different by 1 unit of the metric’s grain.
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ORDERED AND UNORDERED METRICS

Ordered metrics make use of the corresponding order of elements between two
morphs. That is, they compare some notion of A(M,) and A(N,) for some specific
i, or function of i, which might be as simple as:

fi)=i+1 (modN,)

displacing the “correspdnding” interval by one. Ordered metrics are sensitive to
corresponding differences and similarities between morphs, and as such an ordered
form of a metric is generally greater than its corresponding unordered form (the
morphs are “more different”). The correlation coefficient of two samples is ordered
(but not a metric), since it uses the covariance of two samples, which multiplies
the corresponding differences of the ith values with the mean of each sample
(Wonnacott & Wonnacott 1979, p- 99). }

Unordered metrics do not use corresponding intervals, but preserve in some
way, order within morphs. The difference in average values of two morphs is
not truly morphological: a morph has a zero distance from all jts permutations.
The same idea might be generalized to a metric on standard deviation of
values, average or standard deviation of intervals, maxima or range of intervals or
values. ‘

Unordered metrics, while less discriminating than their ordered counterparts,
have several advantages. They are less sensitive to localized differences, and tend
to discern more general shape similarities. More practically, they can be used on
morphs of unequal length without any further techniques, since they are essentially
statistical measures.

Another feature of unordered metrics is that, being more statistical, they are
better than their ordered equivalents at recognizing displaced péttems. The
seemingly obvious but formally difficult problem of recognizing the similarity
between the two morphs in Fig. 4 necessitates at least some combination of
ordered and unordered metrics. Unordered metrics will yield values which indicate
almost total similarity (except for two points), ordered metrics will yield values
which indicate that these two morphs are extremely dissimilar (which they ére, in
terms of their corresponding morphology).

Fig. 4. Morph example.
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METRIC EQUATIONS

The four fundamental forms for magnitude and direction metrics are:

Magnitode Metrics Direction Metrics

Linear Combinatorial Linear Combinatogial
ordered ' OLM OCM OLD 0OCD
unordered ULM UCM ULD UCD

Each form has different versions, including various scaling techniques (absolute,
relative, and unscaled), interval functions and indices (intervals to the mean or
phantom fundamental, adjacency intervals), orders (i.e., metrics on nth-order
difference functions of the morphs), and other variations. Magnitude metrics can
generally be rewritten from the absolute value form to the root of the difference
of squares form, and direction metrics can be generalized to n-ary contours
(Polansky & Bassein 1992) by extending the sgn function to reflect the grain of
contour. In other words, these basic forms can be extended to reflect a variety of
musical ideas. v

In the functions below, M and N are generally assumed to be of equal length,
This condition i$ necessary for the ordered metrics and unnecessary for the
unordered ones.*' A notation is used to make the equations more general, usually
in the magnitude metrics. In most of the magnitude metrics, for A(M, M;,,), one
might substitute the example intervals: ‘

D |M~M,_| (absolute value)

2) MM, (ratioy

3) max{A (M, M) (max of some function) .
4) (M,.—M!.ﬂ)2 (squared difference)

5) /(M2 [*'1)2 (root of squared difference)

or any version of these where M, replaces M, (ie., intervals to some mean
interval). Any metric may be used for A. In general, any interval function which

results in the larger equation being a metric is valid for A Note that all As above

yield positive vall'lcs,‘all except the ratio interval (which is not even comumutative)
are metrics. 1) and 5) are the city-block and Euclidean metrics themselves, in one
dimension. . N

The basic metric equations use the simplest possible interval indexing
(adjacency for the linear metrics, “row then column” indexing for the combinatorial
ones). Substituting different indexing schemes is quite simple and often useful. For
example A(M, f) can be used instead of AM;, M,,,), where f might typically be
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M, or A(M, M) where M, is some fixed index in M. Note that in this case, #I =
L, instead of L-1 (the denominator of the metric should be adjusted). The linear
equations assume A/ = 1, and run from i = 0 to § = L-] , taking intervals between
elements M, and M,.,r,. However, they could all be rewritten with AJ = 2, for
instance, running from i = 0 to i = L-2, taking intervals between M, and M.,

NORMALIZATION

Metric values are usually normalized to the closed real-valued interval [0,1]. A
value of O signifies that the two morphs are the same point in the metric space (by
definition); a value of 1 means they are “as far apart as possible”. Normalization
may not always be desirable. In magnitude metrics, unscaled, unbounded results
may be appropriate for certain situations. Direction metrics are normalized by
definition (see below). Several scaling and normalization techniques are suggested
below for magnitude metrics.

DIRECTION METRICS

Direction metrics measure contour differences between morphs. A morph and some
“contour preserving” distortion .are the same under direction metrics. They are
listed here from least to most sensitive. All use the contour function:*

sgn(AM, M) =
1 or +, where M, > M; (“goes down”)
0, where M, = M; (“stays same”)
-1 or —, where M; < M; (“goes up”)

The assignments of —1 (is less than), 0 (is equal to), and 1 (is greater than) are
arbitrary.®® Any three values or symbols may be used to represent the ternary
relationship (Polansky & Bassein 1992). Direction metrics are by definition scaled
to [0,1], since they measure a percéntage of total values which are different in
contour between M, N-

ULD (UNORDERED LINEAR DIRECTION)

The simplest form of a direction metric measures the differences in average “up-
ness, down-ness and equal-ness” between two morphs: '
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Y [HM#N

v=(~1,0, 1)

L-1)*2

#, 1s the number of intervals in M where sgn(A(M,,, M) = v, v = {-1, 0, 1} (see
the definition of the sgn function). The ULD measures the difference in the linear-
contour “vectors” of two morphs, where the three values in the vector are the
number of occurrences of {-—1,0,1}.““ For example, a linear contour vector for a
morph where L = 4 could be [003], indicating three 1s, or all ascending intervals
(e.g, M = {2,3,4,5))" and another [300], indicating all descending (e.g., N =
{5,4,3,2}). The difference is 6, or twice the number of intervals. The sum of the
values in the vector equals L-/. Scaling the denominator by 2 is necessitated by
the maximum number of possible different contours.*

MN
—
N
Moxrph ' Direction inte&al Direction Vector
M= (51 91 31 2} {-11 1' 1} [102]
N = {2, 5, 6, 6} {-1, "'1: 0} [210]

ULD(M,N) = 1+1+2/6 = 0.67

Fig. 5.  Morph example.

The ULD is a statistical comparison of linear interval contour, indcl;endent of
the corresponding respective intra-morphological orders of two morphs. Like the
ULM (below), it is only trivially a morphological metric, leading naturally to
the OLM and OCD. It is still a useful measure, reflecting a salient perceptual
relationship between morphs. Under the ULD, morphs which “go up a lot”
(linearly) will be closer to others that “go up a lot”, even if they do not go up in
the same places. ULD values range from [0,1], with a gfain of IA(L-1 ) ¥2).

OLD (ORDERED LINEAR DIRECTION)

L-1

3> diff (sgn(AM, M,.), sgAWV, N, ) (OLD)

i=1

L-1
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where:

diff =0if sgn(M,,,) = sgn(N,,)
= 1if sgmM,,) # sgn(N, )"

The OLD measures the percentage of different contour values between
corresponding linear intervals. That is, if AM ; “goes up” where AN ;1 “goes down”
or stays the same, the sum of direction dissimilarities is incremented. For morphs
with the same linear contour, OLD = 0. If two morphs differ in every place
(linearly), OLD = 1. '

The ULD and OLD are somewhat independent. Bven with OLD = 1, it is
entirely possible that ULD = 0, as the following example shows:

Morph Direction interval Vector
o 2{51 3! 61 11 4} [11 "11 1, —1] [202]
P ={3: 61 11 4: 2} {"'lf 1: _11 1] [202] .

Fig. 6. Morph examples.

kULD(O,P) =0, or O,P are the “same point” in ULD-space. OLD(O,P) = 1, or
“they are as different as they can be” in OLD-space, because each corresponding
interval has a different contour. Even though the ULD has a finer grain, in general,
OLD 2 ULD since the OLD is “more discriminating”. However, in thjs case, the
ULD recognizes a “contour inversion” and the OLD does not. OLD = ULD for
strictly monotonic morphologies (that is, where the < or > relationship holds, not
<or2).

OLD values range from [0,1] with a grain of I/L-1. Note that the OLD is
simply an L-] dimensional discrete metric, so is by definition a metric itself.

OCD (ORDERED COMBINATORIAL DIRECTION)

L-1 L
> ; Uff (sgn(A(M,, M), sgn (AW, N,) ) (OCD)

L

m
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The OCD is the combinatorial version of the OLD. It is the most discriminating
of the direction metrics. The OCD measures the complete, cell-by-cell network of
contour similarity between two morphs. The OCD closely reflects melodic
- perception, tracking the difference between the combinatorial contour of two
melodies.* ‘ '
The OLD, ULD and OCD are generally independent (though the OLD is
“included” as the diagonal for the OCD). For the two morphs (above) M
{5.9,3,2}, N = {2,5,6,6)} with combinatorial contour matrices:®

+ +  and - -
+ 0

the diff value betwéen corresponding cells is 5, so OCD(M,N) = .83° If o =
{5,3,6,1,4}and P = {3,6,1,4,2} (see the above comparison of the ULD

and OLD), with contour matrices:

+ o= 4 -+ - +

-+ - and + o+ o+
+ - -
- +

the diff value is 8, so OCD(O,P) = .8 (again, very different), where the OLD(O,P)

= I (completely different “diagonals™) and ULD(O,P) = 0 (half up, half down for

each). ‘ '
OCD values range from [0,1] with a grain of 1/Lm.*

UCD (UNORDERED COMBINATORIAL DIRECTION) - -

The combinatorial version of the ULD (or the ﬁnor'dered version of the OCD) is:

# M-t ,
f:o B [#4 M : (UCD)
(L, *2) ‘

where intra-morphological intervals in M, N are calculated as in the OCD above.
The UCD compares the statistics of combi_nétorial “up/equal/down-ness” of each
morph. It does not discern similarities in corresponding intervals. In general, OCD
2 UCD, since the OCD is more sensitive. '
In the UCD, the difference vector is comprised of L total values, expressing
the number of combinatorial ternary contour intervals.™ For M, N above, the
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combinatorial contour vectors are [105] and [510] which are the sums of the
ternary contours in the contour matrices.

UCD(M\N) = (4+1+5)/12 = .83 (in this case the same as the value for the
ULD). For 0 = {5.3,6,1,4) and P = {3.6,1,4,2}, with the same
combinatorial contour vector [406], UCD(O,P) = 0, where it was quite high, .8,
under the OCD. Thus, in terms of statistical contour, Q and P are the same morph,
but not in terms of ordered contour. The UCD and ULD metrics, in their simplest
forms, are equivalent to applying Morris’ (1979—80) SIM function to the
combinatorial and linear contour vectors. ‘

The following example shows the UCD taken on three morphs, O, R, §-

QRS

\.
‘;\D/’a\n

={513I716} R ={2111211} S={8131514}
23] [204] ‘

Q
[402] [1

Fig. 7. Morph examples,

L,=12)

UCD (Q, R) = 3+2+1/(12) = .5
UCD (R, 8) = 1+2+1/(12) = .33
UCD (Q, 8) = 2+0+2/(12) = .33

The least similar morphs under the UCD are Q and R, though because of their
magnitudes, they visually appear very similar. This example emphasizes that each
metric measures similarity of some morphological feature, not a kind of overall
perceptual similarity. :

As with the OLD and ULD, it is possible to have a low valge for the OCD
and a’ high one for the UCD, and vice versa. The UCD like the ULM, is only
trivially a morphological metric, leading naturally to the OCD. It is more
discriminating than the ULD (in general, UCD > ULD). UCD = OCD for
monotonic morphologies. .

The ULD and UCD do not require equal length morphs. Their more general
equations for morphs of unequal length are: ‘
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#M N | | v
Son | M -1 W _1‘ (ULD, unequal length form)
y{~1, L L
2

M #N |

L I (UCD, unequal length form)
v=(-1,0,1) - .

2

Note that #, is different for the ULD and the UCD. Using M, N, O, P, where the
linear contour vectors are [102], [210], and [202] (for M, Nand O = P respec-
tively) and combinatorial contour vectors [105], [510], and [406] (for M, N and O
= P respectively), ULD(MIN,0) = ULD(MIN,P), and similarly for the UCDy:

ULD(M,0) =.17%" ULD(N, 0) =5
UCD(M,0) =23% UCD(N, 0) =585

M, with its higher curvature, is more similar to O and P than the “flatter” N.
- UCD values range from [0,1] with a grain of IAL, * 2).

SOME COMMENTS ON DIRECTION METRICS

Unordered direction -metrics (ULD and UCD) measuie similarity of general
curvature, while ordered direction metrics (LD and OCD) measure similarity of
specific curvature. Since there can be several combinatorial direction matrices for
a given set of linear direction intervals (Polansky & Bassein 1992), the OLD and
OCD measure distinct morphological features. Consider the linear cbnt_our series:

{+l 4 +} (e1>62{ e2<e31 eB>e4)
lincar contour vector = [102]

representing any of the following 4-element morphs M, N, and O below, each with
different combinatorial contour matrices’s (Fig. 8).

- The combinatorial and linear contour vectors for M, N, and O are:

M N o
[102] [402] [102] [123] [102] [204]
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- Fig. 8. Mérph e){amples.
Note that:
OLD = ULD = 0

for all {M, N, O}. Although the morphs are different, they have the same linear
contour vectors (ULD), and the same combinatorial contour matrix diagonals (used
by the OLD). These three morphs are the same in ordered and unordered linear
contour space. However, for the combinatorial metrics:

.33 OCD(N, O)
.17 UCD(N, O)

OCD(M, N)
- UCD(M, N)

.5 0CD(M,0)
.5 UCD(M,0)

it

.33
.33

i
I

]
il
i

The closest relationship is between M and O in UCD-space, the most distant,
between M and N in OCD- and UCD-space.

MAGNITUDE METRICS

Magnitude metrics measure the difference in intervallic magnitude between two
morphs, regardless of direction. In general, a morph and its inversion are the same
according to these metrics. Morphs which are “almost inversions” of ‘another
morph are similar under magnitude metrics. For example, two morphs with their
last values inverted:

M= {1,3,7,2,5} N = {1,3,7,12,9}

will cause “peﬁurbations” in linear magnitude metrics, and greater “perturbations”
_in combinatorial ones. ‘

Linear magnitude metrics often measure, in the case where adjacency intervals

are used, the difference between sequential values. Combinatorial magnitude
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metrics operate on morphological magnitude matrices, similar to the interval vector
in atonal theory. As in the atonal theory interval vector, the combinatorial
magnitude matrix for a given morph and its inversion are the same.

M={5,3,2,6,9}, N= {5,7,8,4,1}
M, N = {2,1,4,3) }
Combinatorial magnitude matrix M, N =
2314
136
V)
3

Fig. 9. Morph examples.

The choice of A is important in magnitude metrics, since interval magnitude may
not be generally defined. Different functions will work better with diffetent para-
meters. In pc- or p-space, an absolute magnitude function might be appropriate,
since intervals are reduced by pitch-class and inversional equivalence. Harmonic
distance functions are also possible, the simplest example being a kind of 12-ET
“lookup-table” of harmonic ranking (the ranking is arbxtrary, @ composer may
assign her own):

d{(a,b) = 0 (octave); 1 (fifth); 2 (major third);
3 (minor third); ... 11 (minor second)

In frequency or dixraﬁon space, a ratio function is more appropriate. Max, min and
various statistical measures are also useful.
'OLM (ORDERED LINEAR MAGNITUDE)

The OLM measures the avcrage difference between corresponding intervals in two
morphs:

Lii I AM, M,,)~AN, o N, M)l

(OLM)
P L-1

where A is some interval function such as:
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or (M,—M.

i [231

yoor M/M,,

i+1

| MM,

The OLM depends on the particular definition of A. It generalizes the discrete
version of the magnitude metric (see above) to the derivatives of real-valued
functions. Simplifying the OLM equation makes this clear;

L1 '
§| AGD-AW)| | (simplified OLM)
(L-1)

where A(M) is some first-order difference function on M. The OLM may be
generalized to nth-order difference functions, suggesting a variety of musical
uses.”’ '

Unlike direction metrics, magnitude metrics are, by definition, unscaled. Since
intervals are not bounded, the OLM in its unscaled form yields indefinitely large
values. A simpIe scaling technique for the OLM, generally useful for magnitude
metrics, is: : ‘

L~}
> | AL, M)A, N,,)

(scaled OLM)

(L-1) * (maxinf)

where maxint is the maximum interval occurring in M, N. Normalized in this way,
the OLM assumes values between [0,1], assuming a value of 1 only if 1) M, N are
completely comprised of intervals maxint and 0, and 2) whenever AM = 0, AN =
maxint, and vice versa. A variety of other scaling techniques are possible (see
below for the ULM). ' - {

Another form of the OLM is the root of the difference of squares:

L-1 .
; \/(A(M'"’ M, ~AW,N,.)P ; (OLM, root of difference of squares)
(L-I)*(maxint)’

Since the OLM is an average of metrics (for example, absolute value differences),
it is itself a metric, since the sum of two metrics on a set is also a metric.*
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ULM (UNORDERED LINEAR MAGNITUDE)

The ULM is derived from a rearrangement of the unscaled OLM:

M1

N1 '
Z AM M, ) Z AN,N...) (ULM)*
izt _ = '
M, -1 N, -1 l

By analogy with the ULD, the ULM measures the difference of the average
intervals of two mbrphs, whereas the OLM measures the average difference of
corresponding intervals of two morphs.

Where M, = N,, the ULM looks suspiciously like the OLM, since in general:

n n n
Z a,+b, :E a; +E bi
=1 i=1 i=1

‘Rewriting M, as L, we get a simplified version of the ULM:

] ZAM] "] Z AN } (simpliﬁed ULM)
L _ L

However, the OLM (the average of the differences) and ULM (the difference of the
averages) yield different values since:

X al-|X b= X lasl

as Fig. 10 (unscaled) shows. »
A simpler, more conventionally statistical notation for the ULM is:

|A M ~AN | - (ULM, dzjj‘erence of mean g'zétérvals)

where AM,, is the mean interval in M. Simﬂz_i’rly, the OLM may be rewritten as:

|AM, -ANJ ) (OLM, mean difference of intervals)

The ULM is not sensitive to intervallic order, generating a space in which morphs
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M = {1,6,2,5,11) {5,4,3,6]
N = {3,15,13,2,9} [12,2,11,7]
OLM(M,N) = (7+42+8+1)/4 =  4-5
ULM(M,N) = 4.5 — 8| = 3.5

Fig. 10. Morph examples.

are “closer” to each other than in OLM-space. In general, OLM > ULM. Since M,
need not equal N;, the ULM does not requite- equal length morphs.

ABSOLUTE AND RELATIVE SCALING®

Two different types of scaling are shown below for the ULM. The first, absolute
scaling, uses maxint(M,N) for both morphs, normalizing the two morphs to the
larger of the two ranges. Absolute scaling measures “contour” to some extent; the
intervals of the smaller morph are “stretched” in the calculation.. The second,
relative scaling, uses individual values for maxint(M) and maxint(N) to normalize
each morph. It preserves the absolute ranges of each morph in the metric.

erl NL-I
Y AM M) Y AN,

=l . _ =l
M, -1 ‘ N -1 l

nmxint(M,N)

(ULM, absolute scaling)

For this to equal 0, the numerator mustbe:0, so M, = N, (where M, and N,
are the means of the intervals). To equal 1; N, = maxint and M, = 0 for all i (or
vice versa), implying that both morphs are “straight lines”, explicitly not allowed.
Therefore, the range of the ULM with absolute scaling is [0,1).5"

These scaling techniques work best if A is a metric itself. If it is, maxintg(M) is
similar to what is called the diameter of a metric space. Maxini(M,N) should be
used only when A is the same for M, N.
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g AM, M., ) Z_; ANLN, ) (ULM, relative scaling)
(1) % maxint) (N, ~1)* maxint(N)

Assuming M, = Ny, the relative scaled ULM may be rewritten as:

L-1

Z "scaled average" - (ULM, scaled average form)
2 -1

where “scaled average” is:

(AM *maxint(N)) - (AN * maxint(M))
(maxint(M) * maxint(N))

(“scaled average”)

The relative scaled ULM assumes values between [0,1), similar to the absolute
scaled form, since each side of the minus sign in the summation is the average
interval divided by the maximum interval. Even the unscaled version of this metric,
since it is a statistical measure, is “scaled” to the means of the two morphs (see -
the example below). ’ :

The relative scaled OLM is derived from the relative scaled ULM:

Li| AM,M)  AN,N)

=1 | maxintM) ~ maxint(N)|
: L-1

(relative scaled VOLM)A

or

E | (AM *maxint(N)) - (AN *maxznt(M))I

maxint(M) * maxint(N) ) (rewritten relative scaled OLM)
L-1

i=

A final form of scaling, especially useful fcir‘séuared forms of the OLM and OCM,
is the max of the root of the squared differences of correSpondmg intervals
between two morphs, or:
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maxint = max (M. -N. )2 ‘ (maxint, squared form)

nt, int

This form of maxint stays smaller than either absolute or relative maxint, and can
often be a more effective form of normalization.®*

OCM (ORDERED COMBINATORIAL MAGNITUDE)

The OCM is the combinatorial version of the OLM. Its three principle forms are:

L~1 L .
2_; J; |AGM, M) -AN, N (oCcM)
. 3

m

L-1 L
3 X |A(M,M)-AN,N)

= 5 i (absolute scaled OCM)
T L+ maxintGLN)
L-1 L '
‘ - 2
g J§~;1 \/(A(Mi’Mi) A(Ni’NJ‘)) ' (absolute scaled OCM, squared form)
L_maxint(M,N)

where maxint is the maximum combinatorial interval in the two morphs.

S | At AW | |
= | ety mawmi ()| (relative scaled OCM)
L

m

The OCM measures the average cell-by-cell difference between two absolute

magnitude matrices of equal length morphs. For example, for M,N above, with A
= la-bl: .

M= {1, 6, 2, 5, 11} N = {3, 15, 13, 2, 9}
4 10 12 10 1 6

‘matrix(M) = 4 1 5  matrix(N) = 213 6
' ' 11 4
7
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Difference Matrix =

7 9 3 4
212 1 ‘
o 8 5 (sum = 52)
1
OCM(M,N) = 52/10 = 5.2 (OLM{M,N) = 4.5)

As in the OCD, adjacent differences are shown in the main diagonals of the
matrices. The rows are differences between the first element and all succeeding,
the second element and all succeeding, and so on. The highlighted diagonal shows
the linear intervals used in the OLM above. These matrices are alternative
representations of the standard interval vector, except that values are generalized
- by A. The difference matrix is also generalizable by y. The OCM has a smaller
grain and greater sensitivity than the OLM, as shown by this example.

The OCM is strongly related to the OLM, including it as its diagonal
differences. L—.I'/Lm values of the computation are the same between the two
metrics. For a given linear absolute difference magnitude vector, several
combinatorial matrices are possible. For example,' take the vector: !

[2,3,2,1]
which may correspond to the morphs:
{5,7,10,8,9} or {5,3,6,8,7}

and the two different absolute difference magnitude matrices:

2 5 3 4 2 1 3 2
3 1 2 3 5 4
2 1 2 1

1 1

Therefore, OLM(M, N) = 0 does not imply that OCM(M, N) = 0. However, note
that the values in one matrix are simply rearranged into the other (the interval
vectors are the same), implying that OLM(M,N) = 0 = UCM(M,N) = 0 and
ULM(M,N) = 0. This is an “artifact” of the fact that while partial inversions will
distinguish the OLM and OCM, they do not affect the unordered magnitude
metrics.
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When scaled, combinatorial maxints may of course be different than linear ones.
If row and column intervals are weighted in the OCM (see the section below on
‘weightings), the OCM yields musical results which the OLM can not. ) »
Two morphs with the same combinatorial magnitude matrix are related by
transposition and/or inversion. That is, every matrix is associated with a set of
- morphs, all related.by the standard serial operations. This magnitude matrix is a°
slightly stronger condition than for example, the Z-relation (i.e., it includes less
members in a given “equivalence class” created by the relation), because two -
-interval vectors (in the sense of atonal theory) might be the same, but the intervals
might occur in different places, as in the example above. In other words, the
combinatorial matrix described here is “more” morphological than the atonal
interval vector. The UCM (described below) and ULM metrics would find two Z-
related morphs to be the same (d = 0). The OCM and OLM, however, typically
distinguish between Z-related morphs. The OCM is thus closely related to but
 distinct from Morris’ SIM function. It is. more distinct when weightings and
different scaling functions are used.

UCM (UNORDERED COMBINATORIAL MAGNITUDE)

The UCM is the combinatorial version of the ULM, the difference between average
combmatonai intervals.

L, 1, L,
Z E IA(MVM)] E Z IA(N;’N)I (UCM, unscaled)
i=1  j=i+l i=1  j=i+}

L, L, |

The UCM is a useful statistical measure. Like the ULM, it does not rcqulre that L,
= L,. The relative and absolute scaled forms are easily derived and similar to those
- of the ULM, as is the simple notation for the difference of mean combinatorial
intervals. '

For M ={1,6,2 5 11} and N = {3, 15, 13, 2, 9}, the unscaled OCM, OLM
and ULM respectively, equalled 5.2, 4.5 and 3.5, The unscaled UCM = 2.4, the
smallest of the four unscaled forms (least sensitive, since it averages each
magnitude matrix).

The UCM is closely related to Morris’ SIM function. An atonal set theory
version of the UCM would be the weighted difference in average interval between
two interval vectors (weighted by the number of entries in a given place). This
function (which might be called SIM,, ) reflects the difference in “width” or skew

of two pe-sets, for example, for set classes 5—19 and 5—34, with interval vectors
[212122] and [032221], this metric is:
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SIM,, (5—19, 5—34)%

avg

i

[ (2" 1) + (1'2) ... (2"6))/10

= (0" 1) + (3"2) ... (1'6))/10|

(each set scaled by its own # of intervals)

| (2+2+6+4+10+12/10) - (0+3+4+6+10+6) /10 |
3.6 = 2.9]  (5-19 is “wider” than 5—34)

.7

As a second example, using Morris’ terminology and ASIM function for pc-sets of
different cardinality (Morris .1979—1980) SIM,,, of sets R = (3,4,5) and S =
(8,9,1,3), with V(R) = [210000] and V(S) = [110121]:

SIM,,(R.S) =
| (2+1/3) — (142+4+10+6/6) | = 11 — 3.83 | = 2.83
2.83/6 =471 '

ASIM(R,S) =555

where R has an average interval of 1 semitone, S almost 4 semitones. Morris,’
function is nicely scaled to [0,1], while SIM,,, will range from [0, 6], so in the
above example it is scaled in the same way to make the values comparable.

STATISTICAL VARIATIONS OF MAGNITUDE METRICS

The OLM and ULM suggest a wide variety of statistical comparisons between two
morphs, including correlation coefficient (Uno 1991; Morris 1989; Hermann 1994),
differences in standard deviation, statistical distribution, range, and so on.*
Magnitude metrics are similar in principle to the correlation coefficient (CC):

D ) [y
VX b1l X -y

(correlation coefficient)

The CC is not a metric since it yields negative and positive values [-1, 1]. ~1
and 1 indicate negative and positive dependence and 0 indicates that the two
variables x and y are independent (e.g., Wonnacott & Wonnacott 1972). To
illustrate the difference between the CC and some of the metrics, consider M =
{50,10,1} and its retrograde N = {1,10,50}. The CC of M, N i .76, the

OLM (relative or absolute scaled) is 1, but the ULM and OLD are 0. If the morph-
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were “symmetrical”, the CC would be —1, which would “correspond” to the highest
possible value of 1 for the OLD. The CC is the covariance over the product of the -
standard deviations of two variables. However, the covariance (the numerator) can
be rewritten in its scaled form:

205 -1) 0w

L

xy

(covariance, scaled)

Whe_:re L., is a translation into my own terminology of the more common p(x,y), the
probability of (x,y) in the sample (in the probabilistic form of this equation). In
other words, the intervals around the mean are weighted by the number of their
occurrence in the sample. In the metrics, this weight is usually 1, so L,=L1 (iIi
general).

The covariance is similar to the OLM when the mean interval is used as a
phantom fundamental, and the denominator of the correlation (the product of the
standard deviations) is a scalar, similar to maxint. In this way, the CC is a version
of the relative scaled OLM (or more humbly, vice versa), but the OLM is a metric
and the CC is not.” The CC assumes negative values (the individual terms in the
covariance are negative or positive: “above or below” the mean), combining
aspects of the OLM and OLD.

The max-ULM is an example of extending magnitude metrics to other statistical
features. This measures the difference in interval ranges between two morphol-
ogies, in which M, and N, may be different:

i+]

R L | (max UL

An ordered version, the max-OLM, is derived from the 'standard max metric on
real-valued functions (Bryant 1985; Copson 1968 p. 59, for a two-dimensional
version): ' ' '

d(xy)=max{|x®) -y @ |: t element of [a,b]} (standard max metric)

 max|(afpt, b)) -{agw, v,

(max-OLM)

where i goes from 7 to L-1. This is generalized to the max-OCM and max-UCM:
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(max-OCM)

(max-UCM)

I3 o)

i=l  f=i+]

The example below: illustrates the difference between the max- ULM and the max-
OLM: '

M,N,O

‘morphs . absolute magnitude intervals

M, = {30,35,45,43) [5,10,2]

N = {1,25,3,9} [24,22,6]

0 = {30,31,28,33} L1 23,51

max-ulm(M,N}) = [24-10] = 14 max-OLM(M,N} = 19 .
max~ulm(M,0) = |5-10] =5 max~-OLM{M,Q} = 7
max-ulm(N;0) = 124-5] = 19 max-OLM{N,0) = 23

Fig. 11. Morph example.

Note that the max-OLM 2 max:UEM. By these two metrics, M and O are “closer”
than either M, N or N, O. The similarity-ranking (from close to distant) 1is:

[(M,0), (M, N), (N,0)]

which in this case places the three morphs unambxguously on a line with O and N
as endpoints. This one-dimensional ordering is not possible for greater numbers of
morphological comparisons, or-more comphcated relationships where techniques
such as multidimensional scaling become' useful in “placing” a group of morphs
in an n-dimensional space induced. by.a: metnc (see below, and Polansky 1993a).

The slightly more complex:c-ULM measures the differences in standard
deviation of interval size between two morphs:

et e
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where V,, is the variance of Ms intervals, defined as:®

2 .
§ (AM i —(AMN)) (interval variance of M)
L-1

AM,, is the average (or median, or any function of) the intervals in M (written as
AM)), or:

¥ aum,

M= TL1

M, need not equal N;. To show how this “constructed metric” corresponds to the
metric forms outlined in this article, the 6-ULM may be considered as the ordinary
ULM with a phantom fundamental AM,, and with the A function:

A=, )'_ s | (A function for 6-ULM)

where A’ is some lower level interval function on elements of M, and a v
function of;

= |\/; _\/B—‘ : (¥ function for ¢-ULM)

scaled by #I (the number of intervals), »
The 0-ULM can be compared to the absolute value form of the unscaled ULM
with intervals taken to the mean, given below just for the first of the two morphs:

lAM AM;

y 124-a]

(ULM, mean interval fundamental Jrom)
i=1 .

The difference between this form of the ULM and the o-ULM is the difference
between (shortening the notation a bit):

b l x - xul and /E (x.' _ xp)z (“numerators”, ULM, séandard deviation)

similar to the difference between the average city-block and Euclidean metrics
from the mean.”® In other words, the ULM, rewritten as the root of the sum of
squared differences, and with the mean as phantom fundamental, is the standard
- deviation (while the OLM is strongly related to the co).
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The following compares the 6-ULM and the ULM on M, N, and O above. The
ULM, in this example, uses the absolute value of differences between each absolute

value 1nterva1 and the mean interval of each morph.

M = {30,35,45,43} [5,10,2]

N = {1,25,3,9) [24,22,6]

0 = {30,31,28,33} [1,3,5]

AM, = 5.67 AN, = 17.33 Ag, = 3

VM = (.67% + 4.332 + 3.672)/3 = 11.22
VN = (6.67% + 4.67> + 11.33%)/3 = 64.89
VO = (0 + 22 + 2%)/3 = 2.67
YVM = 3.35 JVUN = 8.06 - Jvo = 1.63
e.g., ULM,, = (.67 + 4.33 + 3.67)/3 =2.89

ULM, =756

ULM, : =133
6-ULM (M,N) = 4.71 ULM (M\N) = 467
o-ULM (M, 0)=172 ULM(M, 0} =156
o-ULM (N,0) = 6.43 ULM(N,O). =623

For these particular forms, ULM < o-ULM. Both preserve the “ordering” of the
max-OLM and max-ULM above, while more sensitively measuring the same
morphological feature. Since these variance and standard deviation values are not

scaled in any way, they should not be “directly compared” with values obtamed .

by other metrics.

These examples suggest a range of mathematical and musical apphcatlons ® For
example, the 6-ULM might be applied to the elements of a morph or any order dif-
ference function. It might be generalized to both the OLM (where M, must equal
Np) and combinatorial metrics (by taking the variance of all combinatorial intervals
over L, for different results, and also applied to parameters such as harmonic
distance, duration, and so on. Variance and other statistical metrics, while not
respecting individual order, are useful in comparing important morphological
features, and can be used in conjunction with truly morphological metrics (like the
OCD:) to precisely measure various aspects . of ‘morphological sumlarlty
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EXAMPLES OF MAGNITUDE METRICS
The following is a detailed example of the computation of simple versions of the
four primitive magnitude metrics (ULM, OLM, UCM, OCM) on two morphs, M,
N (with M’ and N the first-order difference functions):

MN M, N

M
MI

= {1,5,12,2,9,6} N =
= {4,7,10,7,3} © N'=

Fig. 12. Morph examples.

M and N might be viewed as short pitch sequences:

A _
e —— ba

- i
===

A

Fig. 13; Morph examples as pitch sequences.

or as duration sequences, or even the harmonic structures seen in Fig: 14 where
harmonic values are taken to the note C, in the following “harmonic distance”
order:” unison (1), fifth (2), fourth (3), major third (4), minor third (5), major sixth
(6), minor sixth (7), minor seventh (8), major second (9), tritone (10), major
seventh (11), and minor second (12). -
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7 6 4 9 8 1
A {
%:&ﬂ::h:! pe
® * ¥ -

Fig. 14. Morph examples as harmonic sequences.

The absolute magnitude matrices of these two morphs are:

M-matrix = 4111 8 5 N-matrix = 13216
7341 ' 2325
10 3 6 543
74 18
3 7
Magnitude difference-matrix = 38 1 7 1
5024
51 3
6 4
4

(See Figs. 15 and 16)

It is obvious from the example that unordered metrics and relauve scaling
(except for the QCM above) tend to find greater degrees of smnlarlty than ordered
metrics and absolute scaling, respectively.

M, and N, .. are different for the combinatorial -and linear metrics; they
represent the maximum combinatorial and linear intervals, respectively. Form 3)
< 2), because both use maximum interval ‘calculations, but only the larger of the
maximum intervals is used in the denominator of 2). In other words, 2) “expands”
the smaller range morph to be the same as the:larger. 3) reflects the actual total
range of the two morphs, while 2) may be" more useful in compoundmg two-
morphs with very different ranges.

7) -9), 10) ~12), the versions of the ULM and the UCM;-are all, by definition,

“scaled” to some extent, since. both sides of the mter~morpholog10al interval are
means in and of themselves, and thus “relatlvely” scaled 8) and 9), and 11) and
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QLM
Ji)‘Unscaled_ oLM
= 3+5+5+6+4 = 23/5 = 4.6
2) Absolute scaled oLM
= 23/(5%10) = 0.46
3) Relative scaled OLM
C=l4/10 - 17| + |7/10 =2/7| - /5
=(l.4 - 0.1421 + |.7 -0.285) .. /5 = (.44
ocy
4) Unscaled OCM
- = 54715 = 3.6
5) Absolute scaled OCM
= 54/(15%11) = 0.327
6) Relative scaled OCM
= |4/11 ~ 1/8! + 11 - 3/B| ./15 = (.366
ULM
7) Unscaled ULM
= |Mintmean - Nintmean!
= 6.2 - 3.2} = 3.0
8) Absolute scaled ULM
= IMintmean -~ Nintmean!/maxint :
= 16,2 -~ 3.21/10 = 0.3
9) Relative scaled ULM
=I (Mintmean/Mpaxint } - (Nintmean/Npaxint) |
= .62 ~ L4587 | ) = 0.1628
UcM
10) Unscaled UCM
= IMintmean - Nintmean!
= {5,133 - 3,53} = 1.6
11} ZEbsolute scaled UCM
= |Mipntmean - Nintmean!/maxint
= {5.133 - 3.53}/11 = 0.14545
12) Relative scaled UCM
=! Mintmean/Mmaxint ) -~ (Nintmean/Mmaxint) |
=1{6.2/10) ~-(3.2/8)]
1.62 -0.4571 = 0.025

Fig. 15. “Numerical comparison of different metrics.

5 MN
4
3
2
1
0
O™ oM
Fig. 16.

I Unscaled
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Graphic.comparison of different metrics.
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12) scale the metric to between [0,1). In 10) — 12), interval means are the mean
combinatorial interval of each morph. Among the many other relationships between
these forms, notice that 11) is simply 10) divided by maxint.

The chart below shows.the values for all of the above metrics on these two
morphs, with some additional metric forms and statistical variants:

Table 1. - Comparison of metric forms.

Values Magnitude metrics Values Direction metrics

0.300000 ULM 0.4 ULD

0.162857 : relative scaled ULM 0.2 : OLD

3.000000 unscaled ULM 0.266667 ucp
- 0.666667 OCD

0.460000 _ OLM

0.649884 OLM squared

0.442857 . relative scaled OLM

4.600000 unscaled OLM

6.498840 unscaled OLM squared

0.327273 OCM

0.479978 OCM squared

0.365909 relative scaled OCM

3.600000 unscaled OCM

5.279755 unscaled OCM squared

0.145455 UcM

0.025000 relative scaled UCM

1.600000 unscaled UCM

-.379865 ce

-.10744 cc’ .

-20362 combinatorial cc

The canonical OLM, ULM, OCM, and UCM above are the absolute ‘scaled
versions, which I tend to use most often. The “squared” versions of the OCM and
OLM (absolute and relative squared) are as above. The corresponding versions for
the ULM and UCM are not given. CC and combinatorial CC are the standard
correlation functions on both the linear absolute magnitude values and the
combinatorial magnitude intervals -of the two morphs. CC’ is the correlation
function on the first-order difference functions of the two morphs.
As a second example, take the short morphs

M = {1,2,4} N = {1,5,9}"
M ={1,2y . W = {4,4)
Miacrix = 13 o Nmatrix. = 4 8

2 o 4

| E
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Values for the 12 magnitude metric forms are given below in slightly different
format, pointing out the three forms of the (non-squared) magnitude metrics:

Relative scaled Abgolute scaled Unscaled

vcM 0 , , .416 3.33
ocM  .111 416 3.33
OLM - .25 .625 2.5
ULM .25 - .625 o 2.5

The following table shows the more complete set of metrics as above, again with
the absolute scaled forms considered to be canonical (shortest names):

Table 2.  Comparison of metric forms. _

Value Metric

0.625 ULM

0.25 relative scaled ULM

2.5 unscaled ULM

0.625 - OLM '

0.917136 OLM squared

0.25 relative scaled QLM
2.5 - unscaled QLM

3.668542 unscaled OLM squared

0.416667 , OoCM

0.61472 OCM squared

0.111111 relative scaled OCM

3.333333 unscaled OCM

4.917761 ’ unscaled OCM squared
0416667 ' UcCM '

0 relative scaled UCM

3.333333 unscaled UCM

Note again that the OLM > ULM and OCM > UCM. However, the same relation-
ships do not hold for the OLM and OCM that hold for the OLD and OCD (in this
-example, OLM > OCM). UnWeighted metrics do not distinguish well between
ordered and unordered forms for short morphs. All direction metrics are zero for
these morphs; they are the same in all four “contour spaces”. The relative scaled
UCM finds the two morphs to be equal; their average intervals in relationship to
their maximum (combinatorial) intervals are the same, though N spreads the
interval size more equally. The relationships unscaled > absolute scaled > relative
scaled relationships are evidenced in this example.
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WEIGHTINGS™

Internal weighting functions on intra-morphological intervals help distinguish the
relative importance of specific intervals or sets of intervals in similarity cal-
culations. A percéptual motivation for weighting functions can be seen in the case
of the OLD. Often, in recognizing similarity, the first interval’s contour will be
more important than the second, the second interval more important than the third,
and so on. To model this effect of “memory decay”, the OLD (or by extension, the
OLM) can be rewritten as:

5% 10 i ) )
0N

If f{i) = 1 (no weighting), the metric’s denominator is L-] » L,or L. The use of a -
weighting function fi) is similar to the use of a probability function p(i) in the
computation of expected value, mean, and standard deviations (see for example,
Neter, Wasserman & Whitmore 1978, p. 118).

J(i} can be any function or set of discrete weights. For example, to “zero out”
the similarity effect of all but a.few intervals in two morphs, f{i) = I for those
indices, and zero for all the others. This is the same as describing a frequency or
probability distribution where the denominator is the total number of intervals and
f(i) * int, is the number of occurrences of a given interval. As such, any standard
statistical or probability distributions may be used. .

More typically some monotonically decreasing function such as I/ or I/7
is used. Tenney’s (1987) “half-cosine interpolation”, a function ‘which starts
and ends slowly, smoothly interpolating in the middle, has also proved useful
(Fig. 17). B - ‘

To empbasize perceptual weighting of events occurring at the beginning and
end of morphs some triangular function, or approximation of an “inverse Gaussian”

or “inverse normal” may be used. In practice, especially for short morphs, a simple
triangular form is adequate:- ‘

(weighted OLD)

Fig. 17.  Half-cosine curve.
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|L/2-i

(inverse triangular weighting)
L2

where i is the index (either linear, row, or column, see below) and L is the number
of intervals.” ‘

In combinatorial metrics, row and column weights may be used. Row weights,
in the form of the matrices used here, bias intervals according to the number of the
morph element (intervals taken to the first element, to the? second element, and so
on). Column weights adjust by adjacency of an interval (one away, two away, and
s0 on). Because each column weight starts further into the matrix row, they also
incorporate something of the row weighting. For this reason, it is often simpler to
specify only a column weight function.”

L-1 L

Y ¥ (©*g0)|AM,M)-A®N,N)|

i=l  jeitl

(X F)*Y. 8())* maxint

(row and column weighted, absolute scaled UCM)

where f(i} and g(j) are column and row weight functions. The unordered
combinatorial metrics have a slightly different weighting equation:

L-1 L L~1 L
{Z Y .o *g,,,(i))A(M,-,Mj)] (Z pIRAOEIA))) A(N,N)
=l j=it+l — \i=l j=iel
X £0+Y £.0) ¥ 50+Y 5,0)
' maxint (N, M)

where g, (j) and £, (i) are Tow and column weighting functions on M, maxint (M,N)
as above, ' ' :

In this more complex equation, separate weighiting functions can be used for the
two morphs, which may be of different lengths. The weighted equations for the
other metrics (OCM, ULM, relative and unscaled forms) are easily derived from
these examples.

The following example shows the differences between weighted and unweighted
versions of the OLM, OCM, UCM, OLD, and UCD in various forms. fli) = 14,
where i is the order number in the morph, or the réspective row or column. .




338 LARRY POLANSKY

M = {1,5,12,2,9,6} N=1{7,6,4,9,8,1}

M= (4,7,10,7,3) N'= {1,2,5,1,7)
Table 3. ‘Comparison of weighted and uaweighted metrics.
Metric Values Weighted Values (14)
OLM : 0.46 ' 0.414599
OLM squared 0.649884 0.574196
relative scaled OLM 0.442857 0.367362
unscaled OLM ‘ 4.6 ’ 4.145991
unscaled OLM squared 6.49884 5.741964
OCM 0.327273 0.478788
OCM squared 0.479978 0.672608
relative scaled OCM 0.365909 0.478532
unscaled OCM 3.6 5.266663
unscaled OCM squared 5.279755 7.398692
UCM 0.145455 0.342639
relative scaled UCM 0.025 0.213554
unscaled UCM 1.6 3.769034
OLD : ' 0.8 © 091241
UcCD 0.266667 . » . 0.266667

Differences in metric values with this weighting function show similarity of
early morph elements more heavily weighted, and also by the relative adjacency
of intervals in combinatorial metrics (both row and column weightings are 1/).
This is seen in the OLD, which measures the two difference vectors:

[~—+—-+TJand[++—++]

and emphasizes the differences in the first four places, nearly negatixig the only
similarity (index 5). - : I

Weightings may be complex, and may be used to fine tune metrics and produce
a wide variety of results using the same morphs and metric functions, The use of
weighting is an important area for further research.

METRICS ON DIFFERENT LENGTH MORPHS

Morphs of unequal length are a fundamental problem in the design of ordered
metrics. Various authors have approached this issue in discipline- and context-
specific ways (Morris 1979—80; Rahn 1979—80; Pennycook & Stammen 1993,
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Rabiner et al. 1978). For the ordered metrics several different techniques of length
normalization are possible, including (Polansky 1987):

1) Down-sampling, or decimating the shorter morph to equal the length of the
longer. o o

2) Up-sampling (interpolating) the longer to equal the length of the shorter.”

3) Zero-padding the shorter to equal the length of the longer.

4) Truncating the longer to equal the length of the shorter.

5) Windowing and averaging the shorter through the longer.

6) Fixed dimensional (time-point) sampling of morphs at equal sampling lengths.

In down-sampling, problems occur when the morphs are of non-integer related
lengths. Salient information may be “accidentally” missed when “out-of-phase”

with the “sampling rate”, obfuscating magnitude and direction similarities between
M, N:

M= {3,5,7,9} , N=4{1,3,1,5,1,7,1,9}
) Nyecimatea = {1r111;l}

Up-sampling is more reliable because interpolated information is based upon
patterns in the shorter morph:

iMintexyélated = {31415: 6171 819110}

In many “real-world” judgements of morphological similarity, we are adept at
cognitive similarity judgements using interpolation, sampling, and filtering for dis-
tortions of morphology regardless of length and/or size. For example see Fig. 18.
Zero-padding and Truncating, are common in signal processing comparisons
and transformations of sounds and sound files.”’ Truncation implies that we “stop
paying attention” to a mdrph when it exceeds the length of the morph under
comparison. Zero-padding assumes the opposite, that we “wait” until the length of
the longer morph has been equalled by some kind of “dead-space after” the former.
Although these descriptions are temporal, the techniques may be used in other
dimensions as well. -
-Zero-padding may be combined with a monotonically decreasing weighting,
which “cross-fades™ or de-emphasizes the problem of having no values to compare

mnd

Fig. 18.  Similar morphs.
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at the end of the longer morph. A steeply decreasing weighting function, reaching
zero before the end of the shorter morph, is equivalent to truncation.

Windowing, pérhaps the most interesting. technique for further exploration,
functions to some extent like convolution.”® In windowing, the shorter morph
“moves” through the longer one, taking a metric each time: -

longer morph: M, length m (17)
M7+ M11)

(M1 —>DNES)

M13—» BMLT)

m-n (12) shifts through longer morph I

N AT

shorter morph: N, length n (5)

Fig. 19. Windowing comparison of different length morphs.
A weighted average is taken as the final step

M, -N, .
Y o (dMNY)
d(M,N)= =2
e

where M is the longer morph, and o; is some weighting function (as in the above
equations for‘weighted morphs). In other words if M, = J00 and N, = 10, 90
metrics are taken, comparing N to (M. ,-"M 10 (M;—M)), ... (My—M,,). The weighted
average of those metrics is d(M,N). The choice of a weighting function is crucial,
A simple approach is to weight metric values highest toward the beginning, middle
and end, as in the following linear function.”

- (weighted metric on different length morphs)

. abs | i mod (L ig2) ~(L g/ 4)
' L4

(linear weighting function for metrics on mbrphs of different lengths)

where Ly is the positive difference in length between the morphs. This function
weights the beginning, middle and end of the shorter morph with the longer,
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attempting to relate salient features. A differently shaped “w”, constructed by
changing the two constants, or one with more “ripples”, tailors the technique to
reflect different points, or a different “frequency” of common saliency. This

technique is also useful for weighting intra-morphological intervals. -

weight

0 -> difference in length

Fig. 20.. “W” weighting function.

The final technique, fixed dimensional sampling, reduces two morphs to a common
length by sampling through another dimension, typically, time. For example, the
similarity of two pitch/duration morphs may be measured by taking a metric on
elements occurring at times (a, b, c,...) for some finite number of time points.
Using this technique, similar to decimation in one dimension, both morphs are
ordered by a common perceptual axis, like time.®

MULTIMETRICS AND MULTIDIMENSIONAL METRICS

Often what is needed is a mefric on more than one dimension of a morph
(multidimensional metric), or a metric which is the result of several metrics on the
same pair of morphs (multimetric). ‘

A simple multimetric is the standard max metric, treating two (or more) metrics
as different points in a two- (or more) dimensional space. For example:

dM\N) = max (OCD(M,N),OLD(M,N)) (max mulzim_etric)

Simple, two-dimensional Euclidean forms may be used to combine metrics:

dM ,N) = ¢ OCD(M,NY: + ULD(M,Ny? (Euclidean multimetric)

. resulting in a space such as the foﬂowing:
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AMN)

ULDb (OCD-, ULD-space)

Fig. 21.  Two-dimensional morphological metric space.

Different metrics may be arithmetically weighted together into a multimetric. For
example:

dM,N) = a(OCM(M ,N; :g(OCD (M.N) (multimetric OCM, OCD)*

returns a value between [0,1], the weighted average of two different metrics (each
of which has many possible forms). Any number of metrics may be used in a
multimetric, with weights and forms reflecting specific musical and perceptual
similarities. Interestlng results may be produced by combining, for example, a
ULM and an OLM; the OLM might be weighted low, producing a metric which
measures the difference of average magnitudes, with a slight “hint” of order.
Similarly, by weighting magnitude and direction metrics differently, one can “tune”
the metrics to measure attenuated or emphasized effects of inversion and contour.
Multimetrics may also consist of.the same metric with different As; for example,
two versions of the OLM, the first with arithmetic absolute value intervals, the
second ratiometric intervals. Metrics which measure range may be combined with
those which measure average interval, linear with combinatorial (especially
interesting if the OLD is combined with the OCD), and so on, creating a wide
variety of morphological metric spaces, and suggestmg an interesting area for
future cxpenmentatlon _

Multidimensional metrics are more problematic since they try to integrate the
effects of varying musical parameters, which necessitate different interval
functions, into one measure (Tenney & Polansky 1980). A simple approach mirrors
that of multimetrics; individual metrics for individual parameters which are
weighted and averaged into a composite metric (see below).
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EXAMPLE OF MULTIMETRICS:
RUTH CRAWFORD’S PIANO STUDY IN MIXED ACCENTS

The following examples show the use of different metrics to envision certain
morphological ideas in Ruth Crawford’s Piano Study in Mixed Accents. This work
consists of 111 phrases of varying length. The first note of each phrase (all
sixteenth notes) is accented, suggesting a (composer specified) set of morphs on
which metrics may be taken (Fig. 22).

- The first example takes four different unweighted metrics on adjacent morphs
for the entire piece. For ordered metrics on morphs of different lengths, windowing
was used with the “w” weighting function described above. Note that although
values vary greatly between the contour and magnitude metrics, all four of the
metrics often follow somewhat similar trajectories, implying certain deep
connections between contour and magnitude (among other things) in the work, at
least in the momentary transitions between one morph and the next (Fig. 23).

Viewing the individual metric “functions” (i.e., a metric over time) for this
‘piece shows the morphological structure more clearly, and also demonstrates some
of the properties of the metrics (Fig. 24).

D =400-500 () =100-125)
JFsempre al fine

ossla J: cresc, un poco
ossia II; dim. un poco

smile 5 Ty & = #% « b
' - # X 1Y —_my ¢ -
,.ﬂr:de o 1 ﬂz # ‘z #'8 1 .:. . [ 4 HE Z T3 3

T e —— e euetnite

Fig. 22, Section 1 of Ruth Crawford’s Piano Study in Mixed Accents (©1932 Theodore
’ Presser Company. Used with permission). '
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Fig. 23. Four different metrics, adjacent morphoio_gies, entire piece, Ruth Crawford’s
Piano Swdy in Mixed Accents.
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Fig. 24. Five different metrics as functions for the entire piece, Piano Study in Mixed
Accents, adjacent morphologies. '
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The OCD and OLD have the greatest range (showing a great deal of adjacent
contour variation in the work). The magnitude metrics tend to be more “damped”,
which may be a secondary result of Ruth Crawford’s compositional concern with
interval class, not interval magnitude. New sections of the work begin at morphs
13, 28, 85, and 100; most of the metrics find some sort of peak at or around those
values (this might be coincidental).

The next example shows the correlation coefficients on the 10 pairs of the five
metrics above, for the whole work.

OLD
UCM
M ucm
ocp B o
| ucD

~0.1 0 01 062 03 04 05 06 0.7 08 09

Fig. 25. Correlation coefficients of different metrics over the course of Piano Study in
- Mixed Accents.

The OLD and OCD are, expectedly, the most highly correlated, with the OCM
and UCM next. There are also positive correlations for the OCM and UCD, UCM
and UCD, and OCD and UCD (the last pot surprising). The UCM and OCD are
almost completely independent, as is the OLD and UCM (actually, a small negative
correlation). Small positive correlations exist between the OLD and OCM and
UCD, and the OCM and OCD. - - |

Taking metrics on adjacent morphs is one possible single-dimensional solution
to illustrating morphological structure. Metrics in the above example could have
been taken to the first morph, the first rﬁorph in a current section, the last morph,
some kind of average of the metrics between the first and last morphs, or many
other possibilities. Since metric spaces need an origin or zero value, the choice of
a given morph, or set of morphs to assign to that origin is musically and
theoretically important. , :

The next example combines the OCD and OCM as (OCM+OCD)/2, using the
graphs for the OCM and OCD above (adjacent morphs, entire piece). As in the
example above, the “w-shaped” weighting function is used to window the shorter
grouping through the longer in morphs of unequal lenigth. This example illustrates
a simple but somewhat effective way of integrating and envisioning metric values
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on different morphological features. With regard to the incipients of new sections,

note the spike at morph 13 (.8), a smaller one at 28 (.57), a slight hump at 85 (.45)
and an anomalous “dip” at 100 (.09). -

OCM +0OCD/2

1
08
0.6
04
0.2

0

"TE2R’53IRBIRL S 8 8

Fig. 26. (OCD+O0CM)/2 metric, adjacent groups: Ruth Crawford’s Piano Study in Mixed
Accents,

Metrics on adjacent morphs measure local, moment-by-moment (or morph-by-
morph) morphological movement. The following two examples illustrate the use
of a non-temporal metric space visualization. Each of these graphs shows
morphological similarity in section 3 of the work (the longest section). The x-axis
is the OCD or OCM value to the first morph in the section, the y-value the OCD
or OCM value to the last morph. Gray lines are drawn in for purely visual reasons,
emphasizing the “shape” of this two-dimensional metric space. They mean nothing
in terms of distance in the space; metric values between for example, the 3rd and
7th morph in the section are not contained in this graph in any way (see the sec-
tion below on multidimensional scaling for more on this concept) (Fig. 27).

- EXAMPLE OF MULTIMETRICS, MULTIDIMENSIONAL METRICS,
AND ENVISIONING METRIC SPACES

The following is an extended example of multimetrics, multidimensional metrics,
and what might be called multimetric spaces, using five equal length melodic jazz
tune excerpts (Fig. 28). '
The pitch and duration® morphs are shown in Fig. 29. There is no common y-
axis here, each morph in one dimension is simply graphed below the previous one.
~ Bach of the four duration functions rises characteristically near the beginning
(a rest at the end of a smaller phrase) and at the end. For each of four different
metrics, the OLM, OLD, ULM, and OCD there are three different half matrices of
metric values between each of the five melodies: duration, pitch, and the average
of pitch and duration® (see Table 4). | o
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“ocm=> first and last, section 3

Q.2 O.4 o.6 0.8 1

Fig. 27. OCM and OCD metrics to first and last melodic groups, third section: Ruth
Crawford’s Piano Study in Mixed Accents.

The two examples in Fig. 30 show combinations of the four metric-spaces, in
the pitch and duration dimensions. The origin of the space is (melody 1, melody
5).% The choice of these two melodies as the origin, for the purpose of this
example, is arbitrary, illustrating only how the matrix of metric valucs can be
plotted in two-dimensional spaces, in the absence of more sophisticated multi-
dimensional reduction techniques like multidimensional scaling (see below). Note
that these pictures of the similarity spaces imply nothing about the similarity
between melodies 2, 3, and 4, except in the similarity of their similarities to
melodies 1 and 5. ' '

The example shown in Fig. 31 reduces the information in Fig. 30 by first
averaging the four different metric values for pitch and duration (multimetrics), and
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‘Fig. 28.  Musical examples for multimetric comparisons.
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Mcelody 5 (Durntions)

Fig. 29.  Visual representation of the musical examples above.

next averaging those two values for each melody. In other words, the pitch/dura-
tion values below show an extremely “information-dense” (if completely un-
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Table 4. Metric values for me_lodies.

Pitch ' Duration Average
(OLD}) ‘
A6 .62 .46 .38 .38 .46 .69 .31 .42 .54 .58 .35
.77 .15 .54 .46 .92 .46 . ‘ .62 .54 .50
.92 .54 .62 .46 .77 .50
38 46 42
(OCD)
.59 .48 .57 .67 .44 .63 .59 .36 .52 .55 .58 .52
.71 .40 .65 .51 .55 .37 .61 .47 .51
.73 .56 .55 .48 .64 .52
65 35 50
. 03 .1 04 0 10 .08 .11
.04 .18 .01 .18 .13 . .15 . .09 . . .1
.09 .05 .13 .11 .03 .15 .10 .04 .14
.19 .04 12 .11 .16 .08
19 19 ‘ 19
(OLM)
.16 .25 .22 .29 .21 .22 .27 .15 .18 .23 .24 .22
22 .13 .33 .26 .36 .26 .23 .23 .29
.29 .33 .32 .25 .30 .34
22 .19 21

weighted) value for the similarities of each melody to melody 1 and melody 5.
Because successive means of different data sets are taken, this set of distance
 values will tend to “flatten out”, blurring similarity distinctions. -Weighting the
different features (metrics, dimensions) in diverse ways will have a great effect on
this space, and will most likely become a study in and of itself.

The following examples show another way of envisioning morphological metric
space. Considering any single morph as a source, different metrics are represented
as dimensions or axes of the space. Each other melody has a single, visually

~apparent distance from the source (Euclidean, city-block, or any other). Euclidean
distances from melody 1 are shown by the example arrows.

In the first example (Fig. 32), melodies 1—4 are plotted in OLM-, OCD-space
(x, y), a multimetric space which separates contour and magnitude along the two
dimensions. Note that melody 5 is clearly the most dissimilar from melody 1 by
both the OLM and OCD, somewhat justifying the use of those melodies as the
“origin” for the examples above (the opposite is the case in terms of duration!).

The second example shows the same metric space, with melody 5 as the origin.
Also shown in both graphs are the means of the metrics for pitch and duration, and
a distance measure with four attributes. In the first example those attributes are:
pitch and duration ordered combinatorial contour, and pitch and duration ordered
linear magnitude. In the second example: pitch and duration linear ordered contour,
and pitch and duration linear unordered magnitude. Since the ULM is generally less
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‘Fig. 30.  Multimetric space for pitches and durations of melodies.
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Fig. 31.  Pitch, duration, and multidimensional metric means.
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o7 1 OLM-, OCD-space to melody 1
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Fig. 32. Multimetric space with a fixed melody as the origin.

discriminating than the OLM, and similarly for the OLD vs. the OCD, the first
graph is more “tightly packed”, the second more diffuse.

The colinearity of the three metric values for each melody is a simple result of
the average, which must fall on the line defined by the two other points.

The corresponding Euclidean metrics (shown by the length of the arrows in the
first chart above) for the 12 points in each of these spaces are:

To Melody 1 To Melody 5

mel pitch dur 9 mel pitch dur 9
2 .61 .49 .78 1 .69 .31 .76
3 .54 .66 .86 2 .66 .49 .82
4 .61 .65 .89 3 .56 .47 V74
5 .73 .39 .83 4 .67 .5 .84

where d is the Euclidean distance value of the pitch and duration (Euclidean

- distance) values. In other words, 9 is some “absolute” distance in one dimension
of each melody from either 1 or 5, combining all four metrics in the pitch and
duration dimensions.

By a long chain of measures, any of which could have been “tuned” in a
number of ways, the table above says that melody 4 (from “Wolverine Blues” by
Fred Morton and John Spikes) is the most dissimilar to both melodies 1 (“Never
Never Land”, by Mark Charlap, from Peter Pan) and 5 (“When You Wish Upon
a Star”, by Leigh Harline, Paul J. Smith, and Ned Washington, from Pinocchio),
and that melodies 2 (“Stormy Weather” by Harold Arlen) and 3 (“Round
Midnight” by Thelonius Monk) are most similar to melodies. 1 and 3, respectively.
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Also, the most similar of the set are 3 and 5, the most dissimilar 4 and 1. Using
these “dense metrics”, the visualization of the space can be reduced even further:

a7 .
Euclidean values to melodies 1 and 5 s
(by paremaetar) & o u4
0.8 ’ -
/’ - 089
o el vz gn4
Ll
. - P us 2
f” 4 '7
04 08 7 o P -5
e Pl
P d -~ -
“ oa -~ /15;4 v e !
”f" ' -
- Pl i
0.z A P T
7 -~ - : = pltch, duration to 1
P ity -
0.1 4,4-3// P H pitch, duration ta 5
s
o e
.8 0.1 0.2 03 0.4 0.5 0.8 a7 oe
plich.

Fig. 33.  Multimetric space for pitches and durations of melodies.

In the above, only a few of the combined Euclidean distances in pitch- and
duration-space are indicated by arrows and the distance values themselves. Recall
that the “source” metric spaces for each of the melodies are different: ULM-, OLD-
space to melody 5, OLM-, OCD-space to melody 1. Note also that physical
distances between points (except to the origin, and to the axes) are illusory; this
graph does not imply anything about distances befween melodies 3, 4, and 5.
Alternatively, distances to melodies 1 and 5 may be used as the axes (leaving
out melodies 1 and 5 themselves), resulting in a closely packed (the heavy square

is added) set of large distances from 1 and 5 (see Fig. 34).
0.8 '
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Fig. 34.
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Combination of a number of metrics to melody 1 and 5.
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This type of visualization allows for an interesting compositional application.
By creating morphs (perhaps stochastically) which lie within balls of small radii
around points in this space, one can design a set :of “melodies” with a desired set
of similarities to two (or more, simply by adding more “source melody axes™) pre-
existing melodies. Interpolations through this kind of space are possible, as are
many other operations (like inversion, compression, and. so on) suggesting many
compositional applications.®® ’

VISUALIZATION OF METRICS BY MULTIDIMENSIONAL SCALING

A standard technique for visualizing large numbers of pairwise relationships in a
small number of dimensions is multidimensional scaling.

“This approach represents the similarity relations between objects in terms
of a geometric model that consists of a set of points embedded in a
dimensionally organized metric space, where the points correspond to the
objects under consideration. The central assumption of this type of model
is that the similarity data can be related by a linear or monotonic decreasing
function to the interpoint distances in the metric space, that is, the larger the -
measure of similarity between two objects, the smaller the distance between
the corresponding points in the metric space”. (Krumhansl 1978)

The following examples illustrate the use of MDS® in visualizing morphological
metric relationships in the piece discussed earlier, Ruth Crawford’s Piano Study
in Mixed Accents. The first graph (not multidimensional scaling) shows five
different metrics on the first section of the piece. This graph is a “detail” from the
larger graph above of the whole piece, but contains an additional metric, the OCM.
Note the common trajectories, like the “hump” in the metric differences between
morphs 4 and 5 (except for the OLD), and 11 and 12.

A set of morphs can be considered in a tmore general similarity context by
envisioning their pairwise relationship matrix in a space of small dimensionality.
The various clusterings, singularities, and overall shapes which result from the set
of paired distances may be seen at a glance. The following five examples are
multidimensional scalings of the pairwise relationship matrices of different metrics
on three of the sections of the Ruth Crawford piece.’’ - '

Lintend these examples to be an illustration of the use of a technique like MDS
combined with the metric functions, more than as an actual “analysis” of the piece.
MDS is more usually used with experimental data to structure a set of pairwise
similarity judgements by subjects, and to try and suggest “dimensions of similarity”
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Adjacent morphs

0.8
0.6
0.4

0.2

Fig. 35.  Five different metrics, compared on section 1, Piano Study in Mixed Accents.

for a multidimensional, or more precisely, multi-attribute data set, especially when
it is unclear what those attributes are. When using MDS, one must be careful not
to assume meanings for given dimensions, although they are often suggested when
1ntu1t1vely considering the data set. In applying MDS to the metrics, the criteria for

“similarity judgements” are known (the metrics themselves),. although the
dimensions of the constructed MDS space are still difficult-to “name”.® In these
examples, the o windowing function was used on the different length morphs
for both (relative scaled) OCM and OCD.

The first two MDS plots show two different metrics on the twelve morphs of
section 1 (see the score example above). Clusterings show similarity (3,5;
- 1,2,4,6,8), and the OCD shows an interesting clustering of “odd/even” morphs;
every other morph is more or less placed into one of two areas in OCD- -space.
Since morph 12 is short (2 notes, a descending major seventh) its singularity is not
particularly relevant here.

The next example (Fig. 38) plots the OCD in the ﬁnal section (score shown
below). The piece is a retrograde of itself, with symmetry around the middle
section, but the composer adds two last notes at the end (C# down 6 A#, after the
final F down to D, imitating the minor third at the half-step from what would be
expected to be the final notes).* For this and other reasons, the number of notes
in each morph differs between sections 5 and 1. However, the OCD still shows
symmetry around the “x-axis” for the two sections. Morph 1 is now the short
morph, and thus spaced widely-from the others. Some, but not all, of the even/odd
clustering disappears. Most importantly, a new morphological similarity space
emerges because of the way that the same notes “phase” through different
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10 Car ‘ 12

Fig. 36. Multidimensional scaling coordinates in two dimensions: OCM metric (section 1).

10 5

11,9 7

~ Fig. 37.  Multidimensional scaling coordinates in two dimensions: OCD metric (section 1).

morphological groupings as a result of the added two notes at the end of the piece
(Fig. 39).

The final two examples (Figs. 40 and 41) show the effect of different scalings
for one metric on the same section of the piece, section 2. Note that the 1/ scaling
technique for the OCD produces small, but interesting clustering changes. In all
cases, MDS-induced two-dimensional similarities between morphs are reduced.

CONCLUSIONS, FURTHER IDEAS

In this article I have presented possibilities and techniques for approaches to the
consideration of morphological similarity. I hope that others will extend, refine,
and explore these ideas in a number of ways that I may not be able to foresee.
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Fig. 38. Last section of Piano Study in Mixed Accents (©1932 Theodore Presser Company.

Used with permission).

10 11

12 4,5

Fig. 39. Multidimensional scaling coordinates in two dimensions: OCD metric (section 5),
unity scaling.

The examples in the last section of the article illustrate a variety of partial
solutions to the problem of visualizing and making use of the nontransitive,
multidimensional nature of the pairwise metric values of a set of morphs. The

usual difficulty of dealing with the (N* — N)/2 pairwise relationship matrix is -

compounded in this case by the number of musical parameters considered, and the
number of different metric spaces, each-a kind of “morphological feature” space.

The use of morphological similarity spaces can be an interesting and fertile
compositional and analytical tool. It is tempting to search for a kind of single,
unified metric which will in some way reflect innate perceptual similarity criteria.
For composers, however, the variety of different measures and envisioning
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Fig. 40. Multidimensional scaling coordinates in two dimensions: OCD metric (section 2),
unity scaling.
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Fig.I 41.  Multidimensional scaling coordinates in two dimensions: OCD metric (section 2),
1/i scaling.

techniques is an advantage, facilitating experimentation, and with it, unexpected
musical results. ‘

Although I have, for simplicity’s sake, exemplified the metrics via simple
melodies and duration series, they have interesting applications in other domains.
For example, spectra may be considered as morphs, and the comparison of spectra
by these metric functions could be an interesting topic for new synthesis and
timbral analysis techniques® Scales and tuning systems are another class of
morphs where similarity, and questions of “between-ness” suggest interesting
musical possibilities. The metric functions may be used generatively as well as
analytically; a new set of morphs may be “fitted” to a predetermined or computed
morphological metric trajectory or space configuration. New scales and spectra (as
well as melodies, forms, and so on) may be generated more or less coﬁtinuously
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between pre-existing ones, providing a formal structure for morphogenesis (the
creation of new morphs) and continuous morphological transformation. '
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NOTES

1. Many of the ideas in this present article supersede and greatly expand upon a brief previous
article (Polansky 1987). This current article contains numerous developments and revisions
incorporating ideas drawn from recent composition, teaching, and software.

2. For an example of the use of the correlation coefficient on musical morphology in relation
to Tenney’s ideas, see Uno (1991).

3. Even what appears to be purely “quantitative” often depends on relation, and usually on
metrics. A pitch mean of “60.7” means little if there is no standard for comparison. Qur
number systems themselves depend on such a metric; without being able to judge the
relative distances of the numbers {0, 1, 3, and 1,000,000} .in some reasonable way, we
would neither bave an arithmetic nor a useful number system. In other words, though
numbers often serve as purely descriptive or taxonomical entities (the concept of one apple
may be irrespective of a metric in our experience), most useful taxonomies are ordered, and
incorporate a concept of distance. There are many examples of “partially ordered
taxomonies” in music, such as Forte’s list of set-classes with its various relations.

4. Tenney (Belet 1987) later suggested substituting the word holarchical for hierarchical (also
see Abraham 1987), since his theory implies-no precedence of forms. Polansky, Burk and
Rosenboom (1990) have further suggested the term heterarchical, because of the various
ways that forms at lower levels may become forms at higher ones, and vice versa.

5. In Polansky and Bassein (1992, p. 275), a morphology is defined with more mathematical
precision, for the purposes of a specific proof, as “a finite sequence of (not necessarily
distinct) elements chosen from an ordered set”. :

6. The definition of a morphology is similar to the concept of a “time-series” in statistics.




10.

11.

12.
13.

14,

15.
16.

17.

18.

19.

20.

MORPHOLOGICAL METRICS : 359

In this article I have not dealt with the possibility that elements in a morph may be of
different dimensionalities. '

It is interesting to contrast Schoenberg’s idea of “variation” with that of modemn statistics.
Tufte (1990, p. 22) points out the shift in this century towards studying and displaying .
standard deviations rather than means: “Measured assessments of variability are at the heart
of quantitative reasoning”. ‘

. “In both p- and pe-space, the order of a set’s members is not defined” (Morris 1991, p. 20).

Generally, the metrics in this article are assumed to operate in the pitch domain, on what
Morris calls (ordered) psegs (Morris 1991, p. 5) — a list of pitches. This does not mean, of
course, that the metrics cannot be easily adapted to transformations of that data, as I have
tried to show often in this article.

Hermann (1994) refers to this as “the cardinality problem”, in his exhaustive examination
of how atonal theorists have constructed similarity functions. Isaacson (1990) also addresses
this in his JCvSIM function, which satisfies his criteria of “be(ing) useful for sets of any
size”. )

Morris (1989) proposes several interesting similarity functions for pc-segments, which
although different in philosophy from the ones presented here, clearly share a common goal,
Of special interest is Morris’ use of the correlation coefficient (p- 120—121), CC, as a
measure. :

Called the discrete metric: d(x,y) = I if x#y; 0if x = y.

- Shreider (1974) provides some similar and amusing examples of nonsymmetrical distance

functions in relation to travelling around Moscow,

Topological spaces which do not satisfy identity in “both directions”, or x = y = d(xy) =
0 but not vice versa, are called psuedometric spaces. Spaces which satisfy identity and
symmetry, but not the triangle inequality, are called semimetric. Spaces which satisfy
identity and the triangle inequality, but not symmetry are called quasimetric. (Sim 1976).
The application of these spaces to music and to musical morphology in particular is an
interesting area for further exploration. ‘

Nick Didkovsky (personal communication) has suggested a special notation for two morphs
which are “equal under a given metric”, for example: Equal(N, M, OLD), rather than “M
= N under the OLD metric”. : :

I am grateful to my colleague Dennis Healy, of the Dartmouth College Math and Computer
Science Department, for suggesting this way of explaining equivalence classes and the
difference between metric and point equality, and for some of the examples in this section.
Roeder (1987) describes several interesting metrics, including toroidal and other geometric
ones on set classes and pc-space. He renotates the Morris SIM function, and refers to it as
a metric, stressing that it is a metric on ICs (or Vs, as Motris calls them). However, Morris’
sim(S,R) violates the identity condition on pc-sets in the way that I have described: two
different set classes may have the same interval vector. Morris does not use the term
“metric” in the original article. “All pc [pitch-class] sets within a single SC [Set Class] have
the same [interval-class]-content. Thus, each SC is associated with one V [interval-class
content, or ‘interval vector’]. However, the converse is not the case; some Vs are associated
with two distinct SCs. In other words, two pc-sets may have the same V but not be related
under T, or T,I [transposition, or transposition and inversion]”. (Morris 1991). This, of

‘course, is the Z-relation. (“Z-related sets dre not related by IT”. (Forte 1965).) Hermann

(1994) analyses similarity functions in terms of whether or not they solve this “z-related sc
problem”,

Again, taking Morris’ sim function as an example, it clearly satisfies the first three
conditions. The triangle inequality is slightly more difficult to prove, yet intuitively obvious.
One only has to try the function on a few interval vectors to be convinced. Since each
individual difference is a metric, and the sim function is the sum of those differences, the
sim function is also a metric.

For an excellent example in the derivation of a simple, computable form of the standard
deviation, se¢ Wyatt and Bridges 1967, p. 29. ‘ ‘

The Morris SIM and ASIM function and the Lord sf (similarity function) are examples of
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L, functions. Teitelbaum’s ... (similarity index) and Isaacson’s ICvSIM relation are.

examples of L, functions.

Shepard (1987) gives an excellent description of the difference between the L, and L, forms
in psychological measures. ‘ v v
Although order is discussed frequently in this context (“Presumably, a refined measure of
similarity would take order into account” (Forte 19635)), certain theorists have dealt with it
in various ways different from the ones I propose here. For an example of a discussion of
ordered pc-sets, see (Morris 1989, pp. 107—109).

Forte (1973, p. 3): "If however, the two sets [ [0,2,3] and {2,3,0] ] are regarded as distinct,
it is evident that they are distinct on the basis of difference in order, in which case they are
called ordered sets”. This is amexcellent way of describing what I mean by morphological.
Apel (1993) presents an interesting application of this in comparing MQ spectral analyses.
The magnitude metric may also be defined as follows:

d(x.y) =\j J 1w -gef

the root of the integral of the square of the differences, or the Euclidean measure rather than
the “city-block” measure.<There is no corresponding min metric, which would violate the
triangle inequality.

Thanks again to Dennis Healy for introducing me to this. The musical interpretation and
rewriting of the more formal mathematical representation of the Sobalev norm, which is a
similar concept to a metric, is of course my own. ‘

“... both Forte’s interval vector.and my interval function count “intervals’ in some traditional
sense, that is, “distances’ associated with pairs, whether nondirected or directed, of pitch-
classes (x,y) or x to'y. In each case, the notion of ‘interval’ is implicily conceptualized as
expressing some basic relation between the two pitch-classes involved”. (Lewin 1977, p.
227). ‘
Formally, this is similar to taking the average difference in corresponding elements of the
INT function of two pc-segs (Motris 1991, p. 43). The Teitelbaum, Lord and Isaacson
similarity relations on interval vectors are roughly equivalent to this form, each with slight
variations. Teitelbaum’s is the L, form, Lord’s the L, form divided by 2, and Isaacson the

. L, “partially scaled” by the standard deviation of the vector value differences. Hermann,

(1994, p. 111), shows how to scale the Isaacson JCvSIM measure to [0,1], using the
conventional method of normalizing a standard deviation,

An alternate form is the square root of the sum itself, as in the standard deviation or
Isaacson’s ICvSIM.

That is: IM, - M, ..., or the “discrete first order derivative”. In statistical analysis of time
series, this is called a “lag”, and a number of lags may be used to analyse a series (i-1, i-2,
. ) up to the total number of pairwise relationships. _

For a more rigorous description of direction and magnitude, see (Polansky & Bassein 1987);
or Morris’ COM function (Morris 1989, p. 28). o

These mutations are coded in HMSL as special cases of the metric functions; everything
described in this article is to some extent characteristic of the mutations as well.

For the purpose of this article, it will be assumed that at least one of the morphs in any

given metric comparison. has at least one “nonzero” interval by the A used, preventing’

maxint and similar scalars from producing a zero denominator. This is similar to saying that

at least cne of the morphs is not a straight line.

‘Like adjacency interval, many of these more abstract ideas are proposed as areas for further

development. I have implemented these notions in a general software environment, but in

my own composition, I have not made use of all possible metrics, indexing schemes, and
interval calculations!

The OLM is coded like this in my HMSL implementation of these metrics.
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Alternately:
{, i+1), (+1, i+2), ...
@, i42), (i+1, i+3) ...
@, i+3), (i+1, i+4) ...
but the form used in this article seems more common (e.g., Morris 1991, p. 22).
Cuddy and Cohen (1976) investigate certain aspects of perception in the recognition of
melodies in which adjacent and nonadjacent or combinatorial, and intervals are altered.
Also expressed as:

i=]

see (Polansky & Bassein 1992) for more on this function, which is also fundamental in
atonal set theory as the total number of values in the interval vector of a set class of
cardinality L.

These measures are only meaningful for L > 2.

In a metric, two morphs may use a different number of interval calculations, roughly having
the same effect as taking a meiric on morphs of different length.

Length equivalence is often assumed in measures of statistical dependency like correlation
coefficient as well.

Since the sgn function is three-valued, these direction metrics measure the differences

“ between what 1 have called rernary contour (Polansky & Bassein 1992). To extend their

definition to measure n-ary contours, the sgn function must be changed to represent n-ary
values. If n gets large for n-ary contours, the results approach those of magnitude metrics,
These are the opposite of Morris’ COM function (Morris 1989, p. 28), also a ternary
function, in which COM(a,b) = 1ifb > a.In (Polansky & Bassein 1992) we call attention
to Knuth’s clarifying suggestion of using a “balanced number system” rather than positive
and negative values. Computationally it is often simplest to use the equation:

M,-M))

J

oo M )=

For n-ary contour functions like those suggested in Polansky and Bassein {1991), these

linear contour vectors (as well as the corresponding combinatorial contour vectors) would
be n-1 places long. See Friedman (1987, 1985), Morris (1989), and Marvin and Laprade
(1987) for related uses of direction vectors.

Note that my notation for morphs is different from the frequent use in atonal set theory of
“curly brackets” for unordered sets.

Morris’ (1979—80) formula for the “number of ICs in common between” two sets R and S
uses the same principle:

k= #V(R) +#V(S) ~ SIM (R,S) |
2

as does Lord’s sf (Lord 1981), which may simply be written as SIM/2 (for sets of the same
cardinality). Morris’s k is an example of “union minus (over) the intersection”, an important
concept in the information theoretic measure of different sized messages (e.g., Chaitin 1979,
and also suggested to me by both David Rosenboom and James Tenney, personal
correspondences). Hermann’s SR (set relate) function is another example of this general
principle, though more elaborate. The “union over the intersection” is a fundamental para-
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digm for many of the ideas in this paper for the measurement of similarity between two sets.
47. The diff function is commonly used in coding theory for metrics on binary strings. Grimaldi
(1989, pp. 647—648) provides a formal description of its use in the Hamming Metric.

48.  For more on combinatorial contour, see (Polansky 1987; Polansky & Bassein 1992), Morris
(1989), or (Marvin & Laprade 1987; where their more or less equivalent CSIM function is
described). I have used the OCD as an important part of many pieces since 1986, including
3 Studies, and 17 Simple Melodies of the Same Length (Polansky 1994b).

49. These are the same as Morris® COM-matrix:

sgn(M,; ~ M,,,) sgn(M; - M, sgn(M; - M)
sgn(M,,; - M,,» sgnM,; -~ M)
sgn(My; — M)

Morris (1989, p. 28) points out also that “Com(parison) matrices are not uniquely associated
with one contour. The contours <4 1 5 9> and <6 2 7 8> will also generate the [same]
comparison matrix... If the graphic representations of contours that have the same
comparison matrices are compared, all the contours will have the same visual (and aural)
pattern”. Under the OCD, these two morphs are the same.

50. Coincidentally the same as the ULD value for the two morphs. When L = 4, the binomial

- coefficient = 6 = 3*2, resulting in the same grain as the ULD.,

51. For an interesting example of the OCD, see Langmead (1995, 1995a), where it is used to
measure differences between morphological representations of different cognitivally based
timbral features. _

52.  Alternate notations for the combinatorial contour vector each having their own advantages,
are Polansky and Bassein’s (1992) ternary numbers for combinatorial contour, and Morris’
(1589) rank order form for contour space.

53. (I3 = 2/41 + 10/3 — O/41 + 12/3 ~ 2/4D/2 = (17 + A2 = .17

54. (11/6 — 4/101 + 10/6 — 0/101 + I5/6 —.6/10D/2 = (.23 + 23)2 =23 |

55.  An equivalent notation for the contour of these three morphologies, using Morris’ “ranking”
method, is M = {2143}, N= {2121} and O = {4132}. In this method, each element in the
morphology is represented in order. by the ranking vector by a number representing its
“rank” from least to greatest. If all values are equal, the vector consists of 1s. In a strictly
monotonically increasing morphology, the vector goes from 1 to L.

56. Note that changing one matrix value, for example 2nd row, 2nd column of M, to — rather
than +, results in what Polansky and Bassein (1992) called “impossible melodies™: contours
which are easily described but which violate transitivity. That is, one may have arbitrary
linear contours, but not arbitrary combinatorial ones, since most are impossible.

57. In fact all of the metrics — magnitude and direction, ordered and unordered — may be
generalized in this way. If A in the above equation is the £gn function, and the absolute
value is changed to diff, this is the OLD. )

58. See Copson (1968, p. 93), and also note that the max of two metrics is a metric (p. 61).

59. Most of the unordered magnitude metrics may be renotated to take into account the fact that
la-bl = lal - 1Bl .

60. This section of the paper benefitted greatly from conversations with Steve Berkley who
implemented some of these ideas in his program corrMorph (Berkley 1993).

61. The parentheses indicates the “half-open” interval 0 — 1.

' 62. My appreciation to Chris Langmead for first suggesting this form.

63. I have not seen this particular atonal similarity measure, but I am not seriously proposing
it since it reduces information too severely to be of much musical use. I am only trying to
point out how morphological metrics may be transformed into their atonal similarity function
cousins. ‘

64. See (Ames 1992, 1991) for a thorough analysis of musical statistical distributions in music.
There are standard mathematical metrics upon distributions, which offers an interesting
direction for further development.
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As such, it is difficult to average a set of CCs.

An even simpler version would be the difference in absolute value ranges of M, N.

This is only one version of the equation for variance which may be thought of as the
average difference between members of a population and the mean.

Treating x, — x, as a, and x; - x, as b, and the summation as one addition, we have lal +
1l compared 0 ¥, (a® + b and squaring both sides, the inequality: (lal + IbIf = &* + b°.
Isaacson’s (1990) ICvSIM is another good example; the standard dev1atlon (unscaled) of the
difference of two interval vectors.

This is the simple ranking of harmonic distance as described earlier. More complex and
sensitive ones may be used, especially for non-12-tone-ET pitch space. A simple adjustment
to this ranking would be to make the harmonic distance equal for an interval and its
inversion. I am not proposing any specific ranking, only using the one above as an example
of how a morph might be comprised of harmonic distances.

The linear contour vectors of M, N respectively are [302] and [104], and the combinatorial
contour vectors, {10 O 5] and [609]. The linear contour series (adjacent intervals) are
[—+—+] and [++—++]. The combinatorial contour matrices are:

!
1
+ o+ o+ o+t

I am indebted to Steve Berkley for implementing the first version of weighted metrics in his
program corrMorph (Berkley 1993). In domg 50, he contributed and helped clarify some of
these ideas.

For real-time applications, I have often used the average of a series of uniform random
distributions to approximate the Gaussian function.

All of these weighting equations are directly applicable to windowing metrics of different
lengths, as described in the section on windowing below.

If both are used, column weights can be rescaled to “eliminate” the mﬂuence of row (an

. artifact of the way these matrices are written). In other words, “visualize” the half-matrix

as in B rather than A below:

A: Column# B: Columnid#
1 2 3 4 5 1 2 3 4 5
a b ¢ d a b c d e
- e f. g e f g
h i h i
i i

In the program Soundhack, by Tom Erbe (Erbe 1994), functions similar to these metrics are

used on sound spectra. The problem of unequal length sounds is solved by offering the

choice of truncating to the shorter file, or time-stretching the shorter to the longer. Carter

Scholz also suggested (personal communication) padding the shorter by other values, such

as the mean,

Zero-padding is often used in FFTs and DSP algonthms to ensure a power-of-two number

of samples.

DTW, or Dynamic Time Warping, a technique from speech recognition, has been explored

in real-time by Pennycook and Stammen (1993) as a similar solution to the problem of

comparing musical sequences of different lengths.

I have used a simple linear form of an exponential or trigonometric equation of the same
“shape”. In weighting these discrete, short morphs, I have found linear functions acceptable

and faster to compute in real time. To apply these metrics to the spectral domain, on sounds

themselves, more sophisticated windowing or weighting functions would be needed, like
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those used in FFT applications (Hamming, Hanning, and other “raised cosine” window
functions); :

'80. Ideas similar to this have been a common technique in later serialist works, and (Rahn 1977)
offers some interesting formal comments on the notion 6f “timepoint similarity in pitch, in
which several different timepoints are associated with the same pitch”.

81. This form was used in my 17 Simple Melodies of the Same Length (Polansky 1994a, 1988).

82. The rest in melody 4 is added to the duration of the previous note.

83. Simple metric forms are used for these examples. All metrics are unweighted, and the
morphs are of equal length. For the OLM and ULM, the absolute scaled forms are used.
Durations and pitch intervals are simple arithmetic differences (unsigned in the magnitude
metrics, only signs in the direction metrics).

84. The metric values in these charts are the top row and final column of the matrices above,
The “top” corner is thus a redundant value (1 is to 5 as 5 is to 1). The values lying on the -
axis themselves (1 and 5) are symmetrical,

85. T used this idea in my piece The Casten Variation, for solo piano or for ensemble, which
is based on Ruth Crawford’s Piano Study in Mixed Accents. (Polansky 1994b).

86. For another example of MDS using the metric functions described here, see (Berkley 1991).

87. I used the commercially available program SysStat for these MDS plots. For more on
multidimensional scaling and the geometrical representation of similarity see Shepard
(1962a, 1962b, 1964, 1974), Torgerson (1965), Tversky (1977) and Krumhans! (1978). As
examples of musical applications of the technique, sece Wessel (1979), Grey (1975) and
Vaughan (1991).

88. Since this is not a study in MDS, I have not listed the usual technical information (stress,
type of scaling and so on). In all cases I used Kruskal scalings and Euclidean metrics. Stress
values were all within standard limits for the program used.

89.  For more on the “palindromic” details of this piece, see (Nelson 1986).

90. The author and Tom Erbe have explored some of these in what we call “spectral mutation”
in the program Soundhack (Polansky & Erbe 1994; Erbe 1994; Polansky 1992a).
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