Larry Polansky

Bregman Electro-Acoustic Music Studio
Department of Music, Dartmouth College
Hanover, New Hampshire 03755 USA
larry.polansky@mac.dartmouth.edu

This is a historical document of my work with live
interactive computers and performers in the com-
puter music language Hierarchical Music Specifica-
tion Language (HMSL) from 1984 to 1992. In this
article, I describe eight pieces that were experiments
in live interactive computer music, each of which
was performed at least several times. The pieces de-
scribed here are: mwwia (B'rey’sheet); 17 Simple Melo-
dies of the Same Length; Simple Actions; Cocks
crow ...; Horn; 3 Studies ...; Slippers of Steel ...; and
The World’s Longest Melody.

Recent commercial and user-friendly real-time ob-
ject-oriented music programming environments like
the popular Max have helped to make interactive en-
vironments more accessible. I hope that the descrip-
tions of my earlier works in this article will give
composers and performers ideas for possible experi-
mentation.

A Brief History of HMSL

David Rosenboom and I wrote HMSL in 1980-1983
at the Mills College Center for Contemporary Music
[CCM). We completed version 1.1 in 1983. Phil Burk
became the third author in 1984, In 1985, HMSL
[versions 3.0 and higher) was released for both the
Apple Macintosh and Commodore Amiga computers
and has been used by many composers since then. It
is a general-purpose programming language, not an
application, and is a somewhat difficult {though pow-
erful) environment to master because the user must
be—or must become—a relatively skilled program-
mer. HMSL also grew out of interaction with gradu-
ate students and colleagues and was created in
response to other computer music languages, past
and contemporary (like Don Buchla and Lynx
Crowe’s Patch-IV, David Rosenboom’s FOIL, David
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Anderson and Ron Kuivila’s Formula, and Daniel
Kelley’s MASC, to name just a few).

HMSL has been used intensively by many experi-
mental composers, who have become intimately in-
volved in the development and evolution of the
language through their own work and research. This
article is an overview of my own work only, not the
broad range of music in which HMSL has played a
part {see the Appendix). HMSL has been fully docu-
mented elsewhere: in the HMSL manual itself {(Burk
and Polansky 1993) and in a long theoretical over-
view (Polansky, Burk, and Rosenboom 1990).

HMSL provides a real-time interactive environ-
ment for advanced experimentation in computer mu-
sic composition, performance, and theoretical
experimentation. It was intended to provide flexible
data strucrures for the design of hierarchical musical
forms, and it incorporates ways of embedding proce-
dures, functions, and stimulus-response algorithms
within the hierarchical and polymorphous scheduler.
The fundamental design of HMSL has remained
fairly consistent since 1980. The most significant ex-
tension was Phil Burk’s addition of the object-ori-
ented programming environment in 1984,

HMSL is designed with three central criteria in
mind: extensibility and experimentation, real-time
interactive performance, and compositional intelli-
gence. The language can be extended and modified
by individual composers, and it supports a wide
range of musical and conceptual experimentation.
No musical idea is deemed too outlandish, strange,
or peculiar to be precluded by HMSL’s design. Our
unofficial motto has always been “Everything is pos-
sible, but some things may not be easy.” HMSL con-
tains a complex, interactive hierarchical scheduler.
The user, composer, or performer can define the
stimulus/response environment in any way desired.
The data structures and concepts of HMSL allow for
real-time applications and support experimentation
in the use and design of compositional, performance,
and improvisational algorithms.
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HMSL and Community Composition

Some of the motivation for writing and using HMSL
comes from a definite desire to continually redefine
the nature of composition and of performance itself.
The computer music community is in an ideal posi-
tion to extend the notion of composition. Informa-
tion, software, and even musical data need no longer
be constrained in a regimented and anachronistic
fashion. Composition and performance are no longer
unitary, individual-hased activities in which one per-
son claims, is the main user of, and receives sole
credit for a work, idea, piece of software, etc. Musical
ideas have always been free-flowing and, to some ex-
tent, a product and property of the whole comunity.

Work in HMSL explicitly acknowledges a common
desire to engender aspects of community music mak-
ing. The authors and users have a common interest in
the evolution of group music making—collaborative
processes that use technology in progressive, co-evolu-
tionary ways, and a de-emphasis of certain aspects of
the composer’s individual role. Now more than ever
we are free to choose among various types of musical
interaction, and the fluidity and portability of musical
ideas as software have facilitated many interesting, ex-
citing, and unusual musical situations of which our
work in HMSL has been just one example. The tech-
nology and social/artistic evolution of the computer
music community can {through projects like HMSL,
Formula, NetJam, and others) approach the level of
musical interaction of, for instance, a community of
improvisers.

Aspects of My Own Work in HMSL

As both developer and user, I often find myself working
on a new piece that significantly extends the capabili-
ties of the language while simultaneously redesigning
the language itself. This experience has been common
to other advanced users. Version management conse-
quently became a significant issue for these pieces—an
interesting experience and one that often made me long
for the good old days of pen and paper or even someone
else’s software [but not for very long). In the pieces de-
scribed in this article, T have focused on several specific
types of experimentation in HMSL.
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Different Forms of Human-Machine Interaction

Each piece attempts to explore interactivity in a
slightly different way. In each piece, the performer
has a specific task or a different way of interacting
with the music-making technology and communi-
cating with the machine and other performers.
The performance task attempts to introduce some-
thing unusual, new, and challenging for the human
component.

Compositional and Performance Intelligence

Each piece approaches composition and creativity

in a different way, exploring notions of determinacy
and indeterminacy {through the use of stochastic
algorithms and other procedures) in various compo-
sitional parameters, the co-involvement of the
performer and the machine in the compositional
process, and in many cases, abdicating compositional
decisions to the machine.

Development of HMSL and a
Community of Composition

Through these pieces I have tried to develop code
and ideas that would be useful to other composers.
Even when the actual code was not likely to be used
by others, I frequently emphasized {through program
notes, teaching, lectures, workshops, etc.) the techni-
cal and algorithmic aspects of these pieces—trying to
make them an open book. My motivations were
theoretical and ontological as well as purely musical.
Each piece extended HMSL in some way. By “cus-
tomizing” the language each time, I was consciously
contributing to the language’s evolution.

Low Hardware Overhead, Inexpensive Systems

All of the pieces involve a minimal, inexpensive, and
portable computer music system. The success of the
piece does not depend on the availability of expen-
sive sound-producing hardware. The pieces needed to
travel (most of thern have been performed interma-
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Figure 1. mwxTa septimal
scale for the trope/
cantillation melody.

text (“In the beginning,
elohim created the heaven
and the earth”).

Figure 2. First few mea-

sures of mwwa cantillation
melody, with tuning ratios
and transliterated Hebrew
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tionally), so the hardware configuration was kept
small and easily modifiable. I was interested in
deemphasizing hardware and the relationship be-
tween consumerism and music, a natural occurrence
since the advent of MIDI. The interest of a piece
should not be related to the economic means of a
composer (something Ron Kuivila has jokingly and
aptly termed “virtuoso consumerism”). It was a par-
ticular challenge to create interesting live pieces
with a software emphasis using inexpensive, flexible,
and rather humble-sounding equipment.

Morphology

Much of my work, including the design of HMSL it-
self, investigates morphology, or form. Although this
is easily seen in works like 17 Simple Melodies ...,
nwxTa, and 3 Studies, my concern with morphology
has taken a very different form in my live interactive
work than in my HMSL-assisted scores, partly due to
the interesting limitations of live interactive systems
with regard to computational speed, predictive abil-
ity, and global knowledge.

De-emphasizing Timbre and the Use
of Found Sounds

In these particular pieces, I am more concerned with
structure, form, machine-performer interaction, and
aesthetic/technological evolution than with sound
itself. Computer music has most often focused on
sound (timbre and synthesis} and avoided issues of
structure, form, and musical and philosophical idea.
The MIDI standard tends to separate timbre from
event in interesting but often restrictive ways. Most
of the pieces described in this article use real-time
MIDI system-exclusive algorithms (as in Simple Ac-
- tions and Cocks crow ...} and other real-time dy-
namic timbral ideas (mwxTa) to expand the boundaries
of the MIDI communication standard. (I believe they

were among the first such pieces to do so.) Several,
like 17 Simple Melodies of the Same Length and 3
Studies, deliberately avoid the notion of timbre en-
tirely, treating MIDI instruments simply as found
objects.

The Pieces
nwnTa (B'rey’sheet) (In the beginning)

nwrTa (1984; revised 1987, 1989) was one of the first
pieces written in HMSL. nwxta is the first of a set of
pieces called the Cantillation Studies, which are
based on computer-aided morphological transforma-
tions of the 11th- and 12th-century Masoretic
cantillation melodies for the singing of Torah {Shabat
morning tropes!. Tt was first performed at the Mills
College CCM using the prototype version of HMSL
running on a single-board Motorola MCG68000-based
computer driving a Buchla and Associates model 400
digital oscillator card. It was written for Jody Dia-
mond, who had also studied the cantillation of the
Torah, the melodies for interpreting the Biblical
nuemes or tropes according to specific liturgical
situations.

Each cantillation study is based on successive 17-
verse sections of the Torah, named in traditional
manner after the first few words of the text. The
computer-generated melodic transformations are
based on the tropes. In n'wr13, the tropes are sung un-
adorned, and the pitch of the voice is captured by
HMSL. Incoming pitches are debounced in software,
and a lookup-table algorithm selects from a set of
possible target pitches. The modal trope is sungin a
just-intoned scale (Figures 1 and 2).

The text is the first 17 verses of the Torah, describ-
ing creation and the gradual imposition of cosmo-
logical order. With each verse, the statistics of the
computer’s musical response are changed. The com-
puter “listens” to the melodies and generates its own
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events based on what it hears and on where it is in
the piece. There is a predefined trajectory of “com-
puter attention.” At the beginning of the work, the
computer mostly ignores the voice, but its attention
gradually and continuously increases until, at the end,
it tries to follow the voice closely. This is achieved by
constraining the amount of randomness from begin-
ning to end. The piece begins in accompanying statis-
tical chaos in all parameters and ends (it is hoped) in
unison with the voice. One variable in the program,
called VERSE-#, controls the degree of all change. It
begins high (17) and ends at 0. A second performer is
responsible for changing the value of the variable (tell-
ing the computer where it is in the piece) through a
simple graphic interface (the Perform Table of
HMSL).

The computer’s sonic material is limited to four
sine waves—a limitation based on my decision to use
only the Amiga’s local-sound but also one that is re-
lated to the text. The Amiga’s four DMA sound chan-
nels are highly flexible in terms of intonation and
timbre. A separate processor is responsible for updat-
ing the DAC outputs from a specified memory loca-
tion, so high-level software can change the output
waveform transparently and quickly without inter-
rupting the sound. In mwxTa, Iwas interested in dy-
namic, point-by-point time-domain waveshape
modifications that were “orthogonal” to HMSL's
higher-level morphological transforms. The four sine
tables are treated as long melodies, and the wavetable
modulations have the following parameters: amount
of wavetable to be modulated, degree of modulation,
type of modulation, and possibility of modulation.

All modulation is time-domain, and the algo-
rithms are derived from the HMSL shape class,
which has many methods for editing lists of musical
data. For example, in nux1a, particular points in the
sine table can be replaced with other points (a kind of
spectral defornlation), or portions of the table can be
read out in retrograde, inverted, scrambled, random-
ized, and so on. The value of VERSE-# determines
the percentage of the wavetable to be modulated (a
lot at the beginning, none by the end} as well as the
amount of deformation of single points from the sine
table and the rate of change of the tables. Typically,
at the beginning of the piece, all four sine tables are
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modulated at audio rates, as is the type of modula-
tion itself (chosen by a large CASE statement). The
modulation rate and degree decrease as the piece
progresses.

One of the most interesting aspects of n'wxTa is
that the computer tunes “on the fly,” using a simple
intonational trajectory to guide its tuning decisions.
The trajectory begins in a complex 17-limit tuning
space and ends in a simple 3-limit one (Pythagorean
tuning). For each verse, the VERSE-# is the limit for
the tuning space, and random tuning values whose
prime factors are limited by VERSE-# are chosen for
numerators and denominators of just intervals to the
just intervals of the melody itself. For example, in
the first verse, the computer might select a 51/50 (a
small minor second to the 8/7 using prime factors
17, 5, 3, and 2) to harmonize the septimal major sec-
ond (8/7) in the melody, resulting in an absolute “mi-
nor-third” interval of 204/175 (approximately 266.5
cents). This pitch might only last a fraction of a sec-
ond because in the beginning of the piece, everything
changes rapidly, and the tuning process happens si-
multaneously in all voices. The computer is always
in harmony with the voice, but the nature of the har-
monic space is stochastic and has a primitive, prima-
rily statistical functionality. At VERSE-# = 7, for
example, only prime values of 7 or lower are allowed,
and by VERSE-# = 3, an organum-like effect is
achieved by the 3-limit—intervals are always some
type of just perfect fifth.

The tuning algorithms used here are what I have
called paratactical tuning (Polansky 1987¢). All tun-
ing is done in real time in response to input, and no
concept of scale is invoked. The pitches used are gen-
erated by the machine in response to the voice, not
chosen from a set of pitches. This is similar to the
way a chorus or string quartet would dynamically
tune to itself over the course of a piece, except that
the rules are extremely primitive. A natural exten-
sion to these algorithms would be to introduce some
sort of voice leading or functionality rules, as Phil
Burk has done in his adaptive tuning software for
HMSL. In mwwz, this was not part of my aesthetic
intent.

By delaying or anticipating change in relation to
the singer, the mood and macro-rhythm of the per-
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formance is varied tremendously. Jody Diamond and
I have found through many performances that even
though both of our tasks are highly constrained and
even somewhat minimalist in performance aesthetic
(she just sings the trope, I just change a few variables
at more or less specified times), the piece sounds and
feels very different depending on our respective tim-
ings. Our growing sensitivity to these details made
performing the piece enjoyable, exciting, and surpris-
ingly unpredictable.

17 Simple Melodies of the Same Length

17 Simple Melodies was written for composer-per-
former Daniel Goode in 1987. 1 wanted a truly por-
table computer music piece that was more than
simply a sequence of note information. It was in-
tended to be a live, interactive, and flexible computer
piece for any melodic performers who could generate
MIDI pitch data—a piece in which their own equip-
ment would be used. This performance configuration
was motivated to some extent by the fact that more
and morc extraordinary and experimental performers
{like Daniel Goode, John Oswald, Ann LaBerge,
George Brooks, and others who have performed this
piece) were starting to work with MIDI equipment in
sophisticated ways: programming their own sounds,
working with various input devices, and so on. What
tended to be available to these artists was commer-
cially-oriented software that limited experimental re-
sources for composition and performance. I intended
17 Simple Melodies as an example of an unusual, in-
teractive, and somewhat intelligent piece for com-
puter and performers of conventional instruments.
By supplying only a musical form as a kind of “black
box” software engine and leaving the timbres of the
MIDI synthesizers as well as all the melodic material
completely up to the performer, I was inviting what I
hoped would be an evolutionary collaboration.

From its inception, 17 Simple Melodies was dis-
tributed to performers on disk with instructions. The
disk contains a compiled version of the piece and the
source code. The score for the piece is the code itself.
Performers were encouraged to modify the source
code in any way they chose or to use it as a model for

making their own pieces, which would be some sort
of collaboration with me.

The form of 17 Simple Melodies is meant to be a
kind of good-natured parody of “classical” artificial in-
telligence; data are gathered by a kind of “perceptron”
(17 melodies of 17 notes each), the data are sorted (the
intelligence), and finally, the data are replayed as a
kind of simulation. In Section 1, the performer plays 17
melodies, each 17 notes long, signaling the computer
through the computer keyboard when ready to play the
next melody. (In one performance, John Oswald put
the keyboard on the floor and entered these signals
with his foot.) The computer informs the performer
when it thinks it has heard 17 notes, by displaying a
message on the screen. Glissandi, rapid arpeggii,
multiphonics, noises, and so on will confuse it, usually
in interesting ways. The salience of the original input
melody in the computer’s recording greatly depends on
the type of material the performer plays and the set-
tings of the pitch-to-MIDI converter.

Section 2 is silent, lasting a few seconds while the
computer sorts the 17 melodies into three indepen-
dent lists, each ordered by some metric to the first
melody played. AN of the melodies are measured
with respect to their similarity to the first melody
by three different morphological metrics {Polansky
1987b) or melodic distance functions on melodies.
The metric from which the three variations are de-
rived is a simple version of what I have called the
ordered combinatorial direction (OCD) metric:

L-10-j
2 E diff sgn[N;,N;,;), sgn (M;,M; ;)
dIN,M)= 12

L

where N, M are two morphologies or melodies [or-
dered lists of numbers); N, M are the i*h elements of
N and M; sgrz is a contour function that returns a -1,
0, or 1, depending on whether or not the first ele-
ment is bigger, equal to, or smaller than the second;
diff is a binary comparison that returns 0 if the val-
ues are equal or 1 if not; and L_ is the binary coeffi-
cient of the length of the melodies (in this piece
always 17) or the number of pairwise relationships.
That is, if the melody is L notes long, then

-1

L, 7
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Figure 3. Musical staff
notation for two sample
melodies to illustrate the
OCD metric.
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for, in this case, 136). L_ describes a “half-matrix mi-
nus the diagonal.”

More simply, this metric sums the difference of
corresponding cells (each containinga 1, -1, or 0) in
the two L contour matrices generated by N and M
(Friedman 1985, 1987; Marvin and Laprade 1987;
Polansky and Bassein 1990). Each note in the melody
is compared to every other note in the same
melody—the contour relationship between the sec-
ond and fifth notes is taken into account as well as
the usual linear contour relationship between the
second and third notes. The results of this internal
network of comparisons form the L, -matrix. If all
cells of the matrix generated by N arc equal to those
generated by M, the metric is 0 and the melodies are
considered to be the same in terms of their combina-
torial contour. A value of 1 indicates that the two
melodies are “as far apart as they can be” in terms of
contour; all cells of the matrices are different. Figure
3 shows two simple five-note melodies. The metric
for these is as follows.

Contour Matrix for Melody 1:
1 I -1 I (Ds>A, D>G, D<F#, D>C)

1 -1 -1 (A»G, A<F# A<C)
-1 -1 [G<F#,G<C)
1 {F#:C)

Contour Matrix for Melody 2:
-1 -1 -1 -1 (G<C, G<B, G<A, G<B)
1 1 1 (CsB C>A, C>B)
11 [BsA, B>B)
-1 (A<B)

In both melodies, the first pitch is lower than the
fourth pitch (-1 in the third position of the first row),
and the second pitch is higher than the third (1 in the
first position, second row). Al] other aspects of their
contours are different. For a five-nore melody, L =
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10, so the OCD metric for these two melodies is the
number of corresponding cells that are different di-
vided by 10, or 0.8.

Three lists of the 17 input melodies are made, ac-
cording to this metric in the pitch and duration di-
mensions and an equally weighted average of pitch
and duration dimensions.

List 1 {pitch} List 2 (dur] List 3 ({pitch+dur/2)}
Melody-p Melody-d Melody-pd

{15 moere sorted

melodies) .
Melody-1 Melody-1 Melody-1

Entries Melody-p, Melody-d, and Melody-pd can be
any of the 17 melodies (except the first]. There is no
necessary correlation between the three lists. They
could all be identical or completely different, de-
pending on the relationships between the similarities
in the duration and pitch dimensions with the first
melody. One could graph this as a two-dimensional
space, with the first melody as the origin, and pitch-
contour and duration-contour distances to the first
melody as the x- and y-axes. List 1 is sorted by x-axes
value, list 2 by y-axes value, and list 3 by a simple
combination of both.

In Section 3 of the piece, the lists are played back
simultaneously on three separate MIDI channels.
The performer does nothing, creating a symmetry: in
the first part only the performer plays, in the second
one no one plays, in the third part only the computer
plays. Several variables can be specified by the per-
former at performance time, including the average
number of repeats for each melody, the probability of
changing a MIDI preset at any given time in the
piece, and the list of MIDI presets available to each
channel. The performer has a tremendous degree of
control over the piece by working with these param-
eters and customnizing sounds and melodies. The du-
ration of the piece can be greatly affected by the
average number of repeats for each melody. The per-
former specification of MIDI presets adds a distinc-
tive individual voice to the performances. One
particularly interesting performance by Daniel
Goode used simple sinusoid-like presets for all
voices, which blurred the linear polyphony into a
more “harmonic” texture.
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17 Simple Melodies was both a philosophical and a
technological experiment. My intent was to make
the simple and straightforward form emerge as the
salient feature. There is a conceivable, though ex-
treme, description of the piece, and of pieces like it,
that says that hearing it is to some extent irrelevant
because it purposefully avoids the decision about
what it should sound like. This is, of course, at odds
with the prevailing notion that music is, at its most
fundamental definition, in some way inextricably
tied to sound (I do not believe this to be necessarily
true) and also against the more purely fashionable
idea that if a composer needs to explain a piece, it
cannot be very good. 17 Simple Melodies is heard,
but it is also in some sense pure explanation, both
from the composer to the machine and the performer
and from the performer and the machine to the audi-
ence. I was not so interested in removing sound from
music as in refocusing the attention of the performer
and audience; the particular timbres might be heard
to be irrelevant; there is no great skill or composi-
tional intelligence required to choose a MIDI preset.
Some listeners react to electronic music almost ex-
clusively on the basis of tmbre. In 17 Simple Melo-
dies this is like reacting to the color of the chair you
are sitting in while listening to the piece—it’s an im-
portant part of the experience, but not one that I
wish to have any part in determining. As a result,
this work has confused, angered, and, I hope to some
degree, interested many who have heard it and heard
about it.

Simple Actions (for Daniel Kelley)

Simple Actions (March 1987) was originally a work
for solo performer and computer, using only a mouse
for input. It was first written on the Amiga, using
only its local sound-producing capacity and an inex-
pensive reverb/delay unit. The most important as-
pects of the piece are described in the score Distance
Musics I-VI (Polansky 1987a):

[The performer/programmer] designs several
very simple ongoing musical events, called
“actions.” The criteria for simplicity is
something like, “the sonic process may be

completely described in about one sentence.”
Thus, glissandi, crescendi, simple stochastic
melodies (or simple stochastic generation of
parameters in any dimension) and random
waveform generation, are all examples of
“simple actions.” Actions ... can be turned on
or off, but once on, they execute repeatedly
until turned off.. ..

Actions ... share data as much as possible.
If two actions have an ‘idea’ in common,
they use the same data. For example, both
a glissando generator and a random interval
generator would likely need a variable for
“previous pitch” (so that the next pitch could
be derived). This variable should be shared by
both actions [so] there is as much “parameter
passing” ... as possible. Another way of stating
this is that each action’s parameter passing to
itself should be interfered with as much as
possible by any other action.

I'envisioned the piece as an ecology with many
little musical organisms, which composer Robert
Marsanyi has called “critters,” wriggling around on a
kind of sonic Petri dish, tripping over each other, al-
tering each others’ paths, and in general, creating a
complex, unpredictable and hard-to-control musical
result. Simple Actions is based to some extent on
Minsky’s “society of mind” concept—that complex
intelligences are often created by difficult-to-predict
interactions of many simple intelligences (Minsky’s
“agents”) that share a certain informational ecology.
Minsky’s concept was part of the inspiration for the
simplicity of each action’s design.

Functioning only as an improviser, the performer
has an unusual task. Actions may be turned off and
on, voices may be enabled and disabled, and variables
may be modified (like range and speed of execution).
The piece is not “playable” in a way that might be
called “musical” in the usual sense of the word. The
performer cannot directly “cause” a particular sound
or event, only classes of events and textures. There
are hundreds of possible simple interacting pro-
cesses, or “critters,” and it is often nearly impossible
to tell what is causing certain effects. The performer
often becomes an observer, trying to figure out what
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is going on and how to shape it toward something
else.

The first version used the Amiga’s four local-sound
channels with relatively simple timbral and musical
processes. These were combined with some unusual
timbral events, such as frequency-modulating large
blocks of the computer’s memory with itself at some
phase increment, a process lifred directly from my
piece Mod.Mania. Later versions of the piece added
MIDI in the form of a system-exclusive library writ-
ten for the Yamaha FBO1, which allows for real-time
control of FM voice parameters, such as low-fre-
quency oscillator (LFO] rate, LFO depth, LFO shape,
algorithm, and modulation index, without sending
MIDI preset changes. As in the later work Cocks
crow, MIDI “note-on” events are avoided almost en-
tirely. Actual frequencies are specified, and all voice
parameters are changed rapidly in real time. The no-
tion of “preset” becomes meaningless. All param-
eters are modulated by the computer as fast as one
wishes. The DEP-5 and the Amiga local-sound are
controlled from the screen in similar ways. To the
best of my knowledge, this was one of the first such
uses of this kind of real-time interactive MIDI Sys-
tem-exclusive implementation. The FBO1 was cho-
sen early on despite its relatively low fidelity because
its system-exclusive implementation was well docu-
mented and can be controlled in a way that one com-
pany now refers to as “dynamic MIDI".

After performing the piece solo many times, I ex-
panded it to include other performers. I wrote more
“simple actions” that integrated the pitch and loud-
ness of an instrument into the sonic ecology. Al-
though the performer was not directly affected by the
data of the other actions [(except aurally), the
instrument’s input data were shared by as many
other actions as possible. A year or so later, I began
to work with the human voice in a similar fashion
and performed the piece with sound poets Chris
Mann in Australia and Paul Dutton in Canada. In
these versions, Mann and Dutton contributed their
own texts (Mann read a previously written one, and
Dutton improvised sound poetry in performance).
This is the version of the piece that I now prefer, per-
baps because I was beginning to get lonely improvis-
Ing with just a mouse and a computer screen. After
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more than 20 performances of the solo version, I was
beginning to get bored and was finding to my dismay
that I could control it. The addition of text and text-
sound gave me a new sense of freshness and interest
in the work as well as the joy of improvising with a
fellow performer.

Simple Actions is a deliberate attempt at musical
and cognitive co-evolution of myself and the ma-
chine. Like 17 Simple Melodies, it is only a begin-
ning toward a new form of musical and performance
intelligence. The nature of the piece attempts to ob-
viate traditional notions of performer creativity, clev-
erness, drama, and “musicality” and forces me to
rethink the very nature of the composer and compo-
sitional, creative, and perceptual intelligence.

Cocks crow, dogs bark, this all men know,
but even the wisest, cannot tell, why cocks
crow, dogs bark, when they do (with John
Bischoff and Melody Sumner)

Cocks crow (1987, 1988) is a live improvisation for
three performers and computer, written after Simple
Actions. It incorporates some new elements into the
live interactive environment, such as more sophisti-
cated use of HMSL's hierarchical data structures to
determine large-scale forms in real time, more devel-
oped use of the real-time system-exclusive MIDI
code, including audio rate control of a Roland DEP-5
signal processor, use of computer-generated real-time
notation in the form of on-screen text commands to
the human performers, and the use of non-electronic
sounds, including the voice.

The title is from a Thomas Merton translation of a
Chang Tzu poem. It describes my intent in the piece:
things happen, and they happen for some reason, but
there is really no way to predict or know when or
why they happen. The entire piece is an HMSL col-
lection—a class of HMSL objects that “know” how
to play their component parts. Collections have an
internal intelligence, called a behavior, for deciding
when and how to play components. The behavior is
user-defined and can be complex, as can the compo-
nents of the collection itself. A collection can also
contain other collections with equally complex intel-
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ligences. In this piece, the main collection decides
when specific sections will begin, what instructions
to give to the performers, the length of each section,
the overall length of the piece, what kinds of param-
eters will be active during each section, and other
things pertaining to the instruments and sounds
themselves.

The first version of the piece was performed at the
Mills College CCM in June 1987 by Amy Neuberg,
Jarrad Powell, and me. HMSL controlled the DEP-5,
an FBOI, and some Amiga-generated sounds. At the
time, the DEP-5 was one of the only low-priced sig-
nal processors that could be controlled in real time
via MIDI system-exclusive commands. Its power has
now been surpassed by other equally inexpensive and
flexible MIDI devices. Neuberg and Powell sang and
played into microphones small sound-making objects
(like children’s toys and small percussion instru-
ments), which they were asked to bring to the perfor-
mance. Their sounds were fed through the DEP-5,
which was controlled rapidly and unpredictably by
HMSL. Each of us had a monitor that displayed infor-
mation about the length of the current section of the
work and instructions such as “Jarrad, play quietly,”
“Amy, make loud sounds,” and “Larry, don’t do any-
thing in this section.” HMSL chose from a large
number of these kinds of instructions for each sec-
tion. The visual aspect of the piece was unusual. The
performers sat behind video monitors with only their
faces showing in the light of the screens. There was
no way to connect the sounds heard with the way
they were produced.

My screen displayed the same information as the
other screens, as well as the HMSL shape editor,
which allowed real-time control of the DEP-5 via
HMSL's system-exclusive library. Each section of the
piece chose a DEP-5 algorithm that was some combi-
nation of its signal-processing algorithms. I made a
DEP-5 “software instrument” (in HMSL’s virtual de-
vice interface, or VDI) that used nine dimensions of
musical data in time. Each dimension represented a
specific DEP-5 algorithm parameter. This data could
be edited quickly in real time via the shape editor.
Figure 4 illustrates a typical shape editor display,
showing the chorus depth dimension. I could play
the DEP-5 by drawing trajectories, or shapes, in time

Figure 4. Shape editor
screen from HMSL, show-
ing one dimension of the
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for each parameter. The interaction between the
sounds made by Neuberg and Powell and my HMSL/
DEP-5 improvisation in HMSL further complicated
the sonic output.

Ialso made several real-time modifiable “instru.
ments” for Amiga local-sound and the FBO! that
augmented the “naturally” produced sounds. The lo-
cal-sound instrument is called a chorder, an HMSL
software instrument that reads five-dimensional
shapes with duration, fundamental pitch of a chord,
average loudness of the chord, harmonic complexity
of the chord, and on/off time ratio for the duration of
the chord. Harmonic complexity is defined as the
height of a pitch in the harmonic series of the funda-
mental. The chorder can be played in real time hy
changing any one of its parameters. The FRO] instru-
ments were similar to the ones in Simple Actions. It
is used like a computer-controlled analog synthe-
sizer; no MIDI “note-on” is ever sent to the device.

This first version of the piece was performed once
more, at Roulette in New York City, with Philip
Comer and Daniel Goode. The next (and final) ver-
sion of the piece had a personal motivation. In July
1988, T left for Indonesia for more than a year to as-
sist Jody Diamond in a Fulbright-sponsored survey of
Indonesian experimental music. Before I left,1did a
set of “goodbye” concerts in San Francisco {at the
New Langton Arts Center) and New York (at the Ex-
perimental Intermedia Foundation) in which I col-
laborated with many of the Bay Area artists who had
been imporrant to me through their friendship and
work. Two of these artists were poet-publisher-per-
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former Melody Sumner, who founded and directs the
important publishing company Burning Books, and
composer-performer John Bischoff, an important pio-
neer of live computer music. I decided to modify the
structure of Cocks crow to make it a collaboration
that incorporated the ideas and work of all three of us.

This version of the work used the same electronic
sounds as the first, and all sound ran eventually
through the signal processor. Instead of playing
“found” sounds from small objects, though, Sumner
and Bischoff participated fully in the computer net-
work. My machine still functioned as a kind of su-
pervisor, but its real-time instructions consisted of
computer data sent to Bischoff’s machine to be pro-
cessed and text instructions sent to Sumner’s screen
telling her what and how to read. Sumner’s 17 in-
structions pertain to how loudly she reads the 17 sec-
tions of her text:

Remaining without change

Rising steadily

Rising, then falling

Rising, then rising more slowly

Rising, then steady

Steady, then rising

Rising with continued acceleration

Steady, then falling

Rising, then rising more quickly, then steady

Falling steadily

Falling, then falling more slowly

Sinking or falling with increased intensity

Falling, then steady

Rising, then falling, then rising

Falling, then falling more

Rising, then falling, then rising, then falling

Falling, then rising, then falling

The text (Sumner 1988) was created especially for
this piece in response to my description of the work
as 17 unpredictable “sonic state changes.” [Parts of
the text were from a work entitled Arms and
Armour, and another fragment was taken with revi-
sion fromWeather by Gayle Pickwell). “Each of the
17 sections depicts uncertainty in a dramatic situa-
tion, superficially, of course, each depicts a change in
season or weather” (Sumner 1989). One of Sumner’s
texts, which describes barometric pressures, consists
of the above instructions. The following are excerpts

from the text; the first is a complete section, the sec-
ond an excerpt from another section:

He stands looking out the glass doors toward
the sundecked expanse of lawn tending to
brown in patches and sporting a few ripe dande-
lion manes. The body on the young man is lean
and tense. His feet are small and perfectly
shaped and the skin all over his body is like
baby’s flesh. The woman loves the young man’s
feet. The woman loves his body. She doesn’t
know what to do with him.

My dear friend,

It has been 90 degrees here for a week. Hu-
mid. Do your fingers seem to stick to things?
I'm not talking about love. I know you can’t
stand another four years of Latin and Greek. I'm
not overly fond of it myself. The game is called
highway and it ends when you arrive. Summer
would be so much fun with you. We could chop
onions and go to the store together without
feeling like thieves. 1 liked my fortune too—
though I wonder if you are ever really getting
what is sent. There have been some changes: 1
moved physically and spiritually. (Through the
medium of inconstancy we sometimes escape
our fate.) This next part is personal. Please read
it carcfully. It has something to do with the
way you feel: You said, “I can imagine us mov-
ing the day’s pleasures along at a brisk pace ...
peering at our dandelions while the broken
mower festers in the evening.” Your letter was
painfully uplifting. I am so depressed. The flow-
ers in the well are beautiful. My clock just
broke. May our friendship be eternal.

In each section of the work, Sumner’s computer
monitor displayed the number of the text she was to
read. Pitch and loudness information from Sumner’s
voice was read by my computer and sent to
Bischoff’s computer via MIDI. Every time my com-
puter decided to start a new section of the piece {and
displayed its length so that Sumner could time how
fast she read), numerical “presets” were passed to
Bischoff’s machine so that he could alter global sonic
parameters. His computer ran a version of the soft-
ware for his work, The Curve Behind the Line. The
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Figure 5. The performance
configuration for Cocks
crow.
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following are excerpts from a description of this soft-
ware (Bischoff 1988):

Eight real-time processes trigger a counter-
point of eight independent rhythmic lines, each
one regularly altering its neighbor’s tempo at
distinct points in its own rhythmic behavior.
Each process is represented by a separate chan-
nel of MIDI activity; ... eight curves (generated
using 1/f numbers as successive goals) are car-
ried on simultaneously, each one advancing
step by step. The unfolding of all eight is the
activity upon which the musical action of the
piece is based.... Each channel has three states:
stationary, ascending and descending.

For this version (Cocks crow), the pitches
played by all eight channels are read from an
eight-note buffer which is continually fed by an
incoming MIDI note stream. This stream origi-
nates from a MIDI pitch follower on the speaker’s
voice (Melody) and is passed through and modi-
fied by the other computer system (Larry} before
reaching my input. The loudness of each note
varies under direct control of the curve for each
channel; the current step in the curve is used as
the MIDI velocity byte for the note.

On receiving a program change message
{from Larry’s computer) at the start of a new
section, a new ictus table (which controls the
rhythms of each channel) is made current and
all down counters are initialized [values that

Langton Arts Center in San
Francisco. Photo by Jody
Diamond.

Figure 6. John Bischoff,
Melody Sumner, and Larry
Polansky performing
Cocks crow at the New

represent the fundamental ictus of each chan-

nell with a value from the new table. This has
the effect of instituting a new unified tempo for
all channels and synchronizing them. In addi-
tion, half the channels are assigned a new voice
timbre. Both effects help to create the feeling of
anew, unified perspective at the commence-

of cach new section.

Cocks crow is a complicated and somewhat unpre-
dictable network of two computers, voice, and digital
signal processor {Figure 5! HMSL “scheduled” the
whole piece, determining at the beginning of each
section which text Sumner would read, how she
would read i, swhat paramcters would be passed to
Bischoff, and what parameters my own sound-pro-
ducing devices would use. Figure 6 shows the three
of us in a performance in San Francisco.

Bischoff and Sumner were completely responsible
for their own parts of the piece. Given the same “ar-
chitecture,” two other performers would create very
different v.-orks‘ Cocks crow is a kind of ardistic par-
allel processor; there is a simple, well-defined com-
munication protocol between the three components,
but they all function independently. The piece goes
out of its way to “not determine” what will happen
and to set up a system that is so interrelated that the
result is often either unintelligible, static, or simply
out of control. My intent was to implemen: a tech-
nology that would, to some extent, do what musi-
cians already know how to do: use a simple
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improvisational structure and set of predefined
performance relationships to produce strange, some-
times beautiful, sometimes awkward and “non-mu-
sical,” but, I believe, fundamentally new music and
sounds.

Horn (for Chris Bobrowski)

Horn (1990) is for French horn in just intonation,
computer, and two Yamaha FBOLs, using 16 preset
sine-wave voices. The HMSL system-exclusive
library is used to send the FBO1's just pitch ratios
for each note. Horn is one of the few live non-inter-
active works I have written in HMSL. The only
communication between performer and machine

is the computer’s real-time display of “how far along
the piece is.” The piece is composed in real time by
HMSL. Horn is a realization or “orchestration” of an
earlier piece called Psaltery (Polansky 1990), which
is based on a continuous modulation between three
closely related harmonic series.

The harmonic scheme is a simple ordering of the
harmonic series up to the 17th partial by a measure
of prime complexity, as shown in Table 1. According
to this scheme, harmonics enter in the following or-
der:1,2,4,8,16,3,6,12,9,5,10, 15, 7, 14, 11, 13,
17. The primes 2 and 1 are assumed for the higher
partials. That is, the 6th and 12th partials are only
considered to be powers of 3 in this ordering. The
three series are related as IV:III {referred to by Ro-
man numerals to distinguish them from particular
partials, notated as Arabic numerals). Horn's struc-
ture follows the harmonic progression of these three
series. First, the 17 pitches of the first series, I [on F),
enter individually in the above order. Next, they are
replaced one by one by pitches from V (A}, in a
modulation-by-replacement algorithm described be-
low. V is then replaced in the same way by 01 (C},
and then III is replaced by I again, whose pitches drop
out from the highest harmonic (17) until there is
only the fundamental remaining. In other words, the
piece has the harmonic form I-V-III-I. Horn is 17
minutes long.

The computer’s modulation algorithm has two
simple rules:
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Table 1 Harmonic Scheme Used in Horn

Primes Used Harmonics
2} 1,2,4,8,16
{3} 3,6,12

{3, 3] 9

{5] ' 5,10

{5, 3 15

{71 7, 14

{11} 11

{13} 13

{17} 17

1. Pitches from the new series enter from the “top
down,” in reverse order of prime complexity
(thus, the first pitch to enter is the 17th partial).

2. They replace the closest remaining pitch (in ab-
solute frequency) from the old series.

Rule I implies that the new series will be more sa-
lient as new pitches enter, since difference tones and
phantom fundamentals are implied by higher har-
monics of the new series. Rule 2 tries to ensure that
the modulation will be as “smooth” as possible. Be-
cause old pitches cohabitate with their replacement
neighbors for the transition period, there is a great
deal of close dissonance, beating, and other acousti-
cal phenomena created by these series’s crossing
each other harmonically. The modulation algorithm
for the horn part follows the same general principles
but is modified slightly for purely orchestrational
reasons {to make the pitches lie more comfortably in
the horn’s range).

The piece consists of stochastic arpeggii for the
computer and horn. Each of the 68 measures con-
tains a set of pitches that can be played by both. The
software uses probabilities that favor stepwise melo-
dies but also allows for skips and leaps. Probabilistic
algorithms for dynamics, rhythmic variation, and
whether or not to play are built into the software.
When a new note is introduced, it is gradually ac-
cented more and more by both computer and horn,
and the exiting pitch is played softer and softer, so
that new pitches cross-fade with old ones.
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Figure 7. One page of the
score for Horn.
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Figure 7 is a one-page excerpt from the horn part.
At this point, the series V (on the major third) is
about halfway through replacing I (on the fundamen-
tal). The fundamental {I} is written as sounding F
{concert B,). The numbers beneath each measure
show which pitch is entering and which pitch is
leaving. For example, in measure 26, Vy/1,, signifies
that the ninth partial of V replaces the 11th partial of
1. Stems up indicate the new series, no stems the old
one. White notes are the entering pitches. Numbers
in parentheses indicate cents deviations from 12-
tone equal temperament. Measure 34 is the full se-

ries on V (parenthetical numbers in that measure
show the number of the partial).

3 Studies (For the Downtown Ensemble)

3 Studies (June 1990) grew out of an experiment
called Duet, for Nick Didkovsky and me playing
electric guitars, in which we each improvised eight
melodies into the computer. One of us played
“source” melodies, and the other “target” melodies.
Using some mutation functions {Polansky and
McKinney 1991; Polansky 1992aj that are closely re-
lated to the metrics described above, the source
melodies were gradually changed into the target
melodies. I intended this piece to move away from
“art” and “performance” and into a kind of pure ex-
periment. It had very little (if any) theatrical interest
and was even more austere in terms of sonority and
musical form than 17 Simple Melodies. However,
certain things bothered me about the work; it wasn’t
simple enough, and the fundamental idea of the
work, one melody gradually being changed into an-
other according to some distance function, was not
clearly communicated to the listener.

I decided to write a piece that was as explainable
as possible, without sacrificing the complexities of
melodic analysis (metrics} and generation {muta-
tions). I liked the experiment form and wrote 3 Stud-
ies to be illustrative of these concepts, simple, and
elegant from a performance standpoint. Although the
ideas of melodic distance that I was working with
were simple and fundamental—measuring the statis-
tics of contour and interval magnitude between two
shapes—they were difficult to explain in words. In 3
Studies, I wanted to use immediately understood
musical elements as the medium for explanation. I
was interested in translating a notion of similarity
from one domain {melodic contour] into simpler, au-
rally obvious ones.

In 3 Studies, the metric distance between melo-
dies, improvised by the performers and heard by the
audience, is manifest in simple musical ways. The
form of the piece is simple. One or two performers
play melodies into the computer. Another performer
operates the compurer via an HMSL graphic interface
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that captures the melodies and plays them back ei-
ther as source or target melodies. The piece uses any
eight-voice MIDI synthesiser for output. Timbres are
left to the performers. The performers and the com-
puter operator communicate verbally and audibly so
that the audience can follow along. For example, the
computer operator says things like “Please play a
source melody now,” “Please play a target melody,”
“Please play a target melody that is closer to the
source,” “I'll now play back the source melody so
you can hear it,” and so on. When a targer melody is
played, the computer takes a metric on it and the
current source melody. The source melody may
change several times over the course of the piece and
may be played back occasionally so that everyone
knows what it is. The metric used is once again the
OCD (as in 17 Simple Melodies), so only the combi-
natorial contour of the source and target is com-
pared, not absolute pitch, interval magnitude, or
anything having to do with durations. The metric
value, ranging from 0 to 1, produces simple and au-
dible variations in an ongoing sonic fabric.

The three studies, called Rhvthm, Melody, and
Harmony, may be performed in any order. In
Rhythm, eight MIDI voices are set to a common
pulse and play continuously throughout the piece.
The metric between the source and target deter-
mines the range of possible stochastic displacement
off the pulse for each voice. In other words, if the
source and target melodies are quite dissimilar, the
eight voices will create a complex, non-synchronous
fabric. The closer the target and source become, the
closer the eight voices approach the pulse. The met-
ric value also determines the harmonic fabric; for
large values the eight voices will tend to select
pitches from an extended altered dominant 13th
chord, and for smaller values pitches from the related
tonic major seventh are used. When the performers
finally match the target and source exactly, all eight
voices line up exactly on the pulse in a major sev-
enth chord.

In Melody, eight simple melodies form the back-
ground, “manifesting” fabric. The pure form of each
of these melodies is an ascending chromatic scale of
about one octave. The metric values are directly
linked to a contour mutation value for each of the
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ies at the Composer-to-
Composer seminars in Tel-
luride, Colorado, in 1990.
Photo by John Fago.

Figure 8. Iris Brooks axnd |
Wayan Sadra. 7lutes, and
Larry Polansky. computer
control, performing 3 Stud-

eight voices. That is, the greater the metric value be-
tween source and target, the more the contours of
each of the voices will stray from strict linear ascen-
sion. As in Rhyvthm, when the value is small, the
voices lock into a unsion. I will not go into the details
here of the mutation functions used; it is sufficient to
say that cach metric function has corresponding mu-
tation functons that are like inverse metrics—they
generate target melodies that are a given metric value
from a source. I had used metric and mutation func-
tions separately in various pieces before. In Melody,
these two concepts were used together, and in fact
linked, for the first time {and in real time!l.

Harmony is my favorite of the three because it
most fully achieves the aural simplicity of the mani-
festation of distance. The sonic fabric is eight sus-
tained tones, which are constrained to be within a
major third of each other (plus or minus two half-
steps of a fundamental!. The metric values stochasti-
cally control the pitch bend of each voice so that the
farther apart the source and target, the wider the
eight-voice chord tends to spread. When they are
very close together, the resultant chord tends to be a
dense, microtonal cluster. When they are exactly the
same, a unison emerges.

Like 17 Simple Melodies, 3 Studies is portable and
distributable as softwzre. It can be performed by any-
one with a Macintosh, a simple MIDI synthesizer,
and a pitch-to-MIDI cenverter. Figure 8 shows a per-
formance of 3 Studies at the Composer-to-Composer
seminars in Telluride, Colorado, in 1990.
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