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HMSL (HIERARCHICAL MUSIC
SPECIFICATION LLANGUAGE):
A THEORETICAL OVERVIEW

A

LARRY POLANSKY
AND
PHIL BURK
WITH
DAVID ROSENBOOM

PREFACE

HIS ARTICLE PROVIDES an overview of the computer music language

HMSL, and some brief examples of its use in the compositions and
experiments of Phil Burk and David Rosenboom. HMSL itself is written by
Burk, Polansky, and Rosenboom.

HMSL OVERVIEW

BRIEF DESCRIPTION, HISTORY, AND TECHNOLOGICAL CONSIDERATIONS
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HMSL is an object-oriented computer-music programming language writ-
ten at the Center for Contemporary Music, Mills College, Oakland. HMSL
was begun in 1980, and is still being developed. The language is completely
extensible, and is distributed in fully documented source code so that users
may alter and extend it to suit their own needs. Briefly, the HMSL
environment consists of:

1. a general-purpose object-oriented programming language (ODE) in
which HMSL itself is written, and which is fully accessible to the
user;

2. a completely general hierarchical scheduler (PE), capable of schedul-
ing processes, events, and data of all sorts;

3. alarge set of flexible data structures, specifically designed for musical
artificial intelligence and real-time musical performance, which can be
extended and redesigned by the user;

4. a flexible and customizable stimulus-response environment that
allows the user to design complex and intelligent real-time interactive
performance situations;

5. a Virtual Device Interface, which is a set of utilities for user specifica-
tion of output data, allowing the scheduler, stimulus-response
environment and other parts of the system to be completely inde-
pendent of eventual sonic (or other forms of) realization;

6. several graphic interfaces for creating, editing, and interacting with
data and processes, and a graphics language for creating one’s own
graphic interfaces;

7. low-level device drivers for MIDI, sound-synthesis, and graphics
applications;

8. a Score Entry System for entering data in more conventional musical
ways;

9. a large set of miscellaneous programming utilities and libraries
designed for musical applications.

HMSL’s design intent was to provide a powerful and flexible real-time
programming environment for music. Its authors were particularly inter-
ested in a user-defined stimulus-response environment for performance, in
the specification of large-scale hierarchies, morphological transformations
(hierarchically), and the ability to interface the system to any external
hardware, including but not limited to sound-producing devices.! HMSL
was designed to be highly portable, to run on the new series of 16-bit
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microprocessors that had just been introduced (around 1980). The
Motorola 68000 series was chosen as the host processor, and Forth was
chosen as both the operating system and the programming language in
which to write HMSL.2

In the interests of portability and availability, HMSL was targeted for
small computer-based systems. The Mills College Center for Contemporary
Music has traditionally been an important focus of research and develop-
ment in live electronic music and, consequently, in affordable technolo-
gies.3 HMSL was intended as a general-purpose and highly flexible real-
time music language for performance that would be a “next step’ in the
evolution of live electronic music.

FORTH AND ODE

Forth has been for some years the language of choice for many composers
working in microcomputer music.4 It is particularly useful and applicable in
real-time computer-music applications because of its flexibility in hardware
control, conservative memory requirements, and extensibility. Forth code
is highly portable, and one of our interests was to have in HMSL a kind of
“clearing house” of musical software ideas that could be shared, added to,
and learned from by a wide community of users.

HMSL has a “three level’” environment for user programming: Forth,
ODE, and HMSL. Phil Burk wrote ODE (Object Development Environ-
ment) in 1986 to further develop HMSL’s data structures. HMSL’s data
structures are now completely written in ODE, and users have full access to
that environment as well as Forth for their own code. All three “levels’ are
of course concomitant, and a typical HMSL program uses all of them most
of the time.5

ODE

Burk’s ODE is robust and full-featured, and was designed for real-time
programming. Those familiar with object-oriented programming languages
will find ODE to be reasonably standard. ODE is loosely based on the
Smalltalk-80 model of object-oriented programming, and includes the
concepts of classes, objects, inheritance, message passing, methods, and
instance variables. Much of the syntax for Burk’s ODE is based upon the
NEON language for the Macintosh, an earlier object-oriented Forth system
(from Kriya Systems).

Object-oriented programming environments are attractive to musicians
because they allow composers to describe musical events in very broad
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terms, and attribute to them certain characteristics and behaviors in much
the same way that composers treat conventional musical phenomena. For
example, the “row”’ in serial music, the “pc set’ in atonal music, or the
“subject’” in a Baroque fugue are often considered independent entities,
with certain “self-transformative’” properties (such as the tonal answer for
the fugue, or the canonical transformations for a row), measures (e.g.
Forte’s “interval vector’ for a pc set), and attributes (e.g. length, key, et
cetera). These measures, attributes, and transformations are universal over
the set of musical objects of a given category, but may have different local
values for a specific instance. This way of describing musical events is well
suited to a programming style that depends on the definition of self-
contained entities with specific attributes and the ability to communicate
with each other. Object-oriented musical programming, it should be
noted, offers the composer far more than a means of imitating preexistent
musical formulations. It is a powerful language for describing new and
experimental musical entities.

There is extensive literature on object-oriented programming and, par-
ticularly, object-oriented music environments (Cox 1986; Goldberg and
Robson 1983; Pope 1986, 1987, 1989; Flurry 1988; Polansky, Burk, and
Rosenboom 1987; Burk 1987; Scaletti 1987, 1989, 1989a). Burk’s
description of and tutorial for ODE in the JForth Proféssional version 2.0
manual (Burk et al. 1989) is a comprehensive description of this
environment.

ODE FEATURES

Although conceptually similar to Smalltalk, many of ODE?’s features look
different because it is Forth-based. Unlike Smalltalk, low-level data struc-
tures (like constants, variables, numeric literals, simple functions, and so
forth) are not objects, they are simply Forth words. In general, ODE is
used only to implement higher-level data structures.

ODE is optimized for real-time music performance. Unlike Smalltalk,
there is no “garbage collection” scheme (for a description of this in
Smalltalk, see Goldberg and Robson 1983, 674-85). Message passing in
ODE is compiled directly to machine language (except in the case of late-
binding). Two examples below will illustrate some of ODE’s particular
syntax, as well as some interesting musical features.

Late-binding. An important feature of ODE is late-binding, the ability for a
method to pass a message to an ““unspecified” or variable object.

For example, consider a class called SCALE with specific instances called
MY-SCALE and YOUR-SCALE. The SCALE class has methods defined for using
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various tunings. The following would be the usual way of telling an
instance of the SCALE class which tuning to use (“early-binding’’):

USE.SLENDRO: MY-SCALE

Late-binding allows the programmer to leave unspecified the actual
instantiation used, by passing the address of that instance to the method via
the Forth stack, as in the following:

VARIABLE CURRENT-SCALE ( declare ''holder'' variable )
and then somewhere later in the code:

YOUR-SCALE CURRENT-SCALE ! ( make YOUR-SCALE current by )
( storing it in the variable )

and then, somewhere else again in the code:
CURRENT-SCALE @ USE.SLENDRO: []

This last line is read as “Current scale fetch, use-slendro, late-bind.,”
where CURRENT-SCALE is a variable containing the address of some
object. “@”’is the Forth word (“fetch’) for retrieving the contents of that
variable. “!”” is the Forth word (“store”) for storing to a variable. The
point of the above procedure is that we know we want to use slendro, but
we don’t know which scale (“yours” or “mine’’) we will be using at that
point in the program.

Dynamic Instantiation. In ODE, objects are usually instantiated at compile
time, and given a name. For example:

OB .HARD.LICK FUNKY-LICK

creates an instance of the class 0B.HARD.LICK called FUNKY-LICK. In ODE
this is called compile-time instantiation. Dynamic instantiation, however,
allows the composer to create objects “on-the-fly’” in response to stimuli
(such as MIDI or analog input), or algorithmically. In many cases, particu-
larly musical ones, the programmer may be interested in the Nth object in a
list of many, more or less identical objects, rather than a single named
object. Dynamically instantiated objects are referenced by their address, not
their name. Their addresses can be maintained in a list of many objects of
the same class, and referenced by indexing into that list.

In the following example, an object of a class is instantiated, and its
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address, left on the stack by the word INSTANTIATE, is placed in a variable
for later use:

VARIABLE CURRENT-REAL-COOL-LICK
INSTANTIATE OB.HARD.LICK
( — address-of-object-instantiated, from the )
( predefined class called OB.HARD.LICK )
CURRENT-REAL-COOL-LICK !
( store object's address in variable )

and later, elsewhere in the code:

COOL-LICK-NEEDED?
IF
( check to see if cool-lick-need is true? )
CURRENT-REAL-COOL-LICK @ PLAY: []
( play the current one )
THEN

This technique makes the creation of large lists of musical data structures
quite easy. In live performance, it allows the computer to create, transform,
and keep track of complex sets of musical entities without the composer/
performer specifying them one by one.

HMSL DATA STRUCTURES

This section briefly describes some of the basic musical data structures in
HMSL. For a fuller description of the methods, uses, and intelligences of
each data type, the reader is referred to the appropriate section of the
HMSL manual.

MORPHS

The fundamental object in HMSL for the creation and execution of
musical heterarchies¢ is the morph, short for morpholggy. Morphs are holders
of ordered data which can communicate with each other and with the
HMSL scheduler. Subclasses further down the inheritance tree from
morphs have more specific musical intelligences (see Example 1).

Since one of the music-theoretical and compositional design motivations
for HMSL was to develop an environment for the manipulation of gener-
alized morphological constructs, this rather general notion of an “ordered
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ob.allocator
ob.translator

ob.tuning.ratios

ob.list

Y
! ob.instrument ’
Gb.amiga.instrume@ Gb.midi.instrument)

ob.collection

9
' ob.action.table '

ob.player

EXAMPLE 1: HMSL CLASS INHERITANCE DIAGRAM

ob.objlist

) (ob.production )

ob.envelope

( ob.waveform

ob.sample

data’® holder became the kind of “ur”’ class. It is not very different from an
array, and is actually a subclass of arrays. What distinguishes morphs, and
what makes them musically useful in HMSL, is that they have some
concept of “execution’’—they can be “played”’ or “scheduled,” and are
ordered lists of data which “do something.”> Integral to this notion of
“execution’’ are methods for communicating with “parent’ and “child”’
morphs, such as methods for ““starting a child,” or for “telling a parent”’
morph that the “child’> morph is “done” executing.

There are various methods for adding, deleting, and editing data for all
morphs. Most of the HMSL musical data types (shapes, collections, struc-
tures, productions, jobs, et cetera) are subclasses of the morph class.
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SHAPES

Shapes, a subclass of morphs, are multidimensional arrays with methods
for manipulating data in musically useful ways. In HMSL shapes can
contain “raw’”> musical data of any type: a parameterized list of musical
events (e.g. notes, with the dimensions of duration, loudness, and pitch,
and so forth), complex arguments to some function (like filter coefficients
to an outboard device, perhaps with associated durations), or a list of data
specifying statistics of musical form at any level. Although shapes may
contain pointers to other morphs, they can not heterarchically contain
other morphs. Shapes are generally the lowest node in an HMSL
heterarchy. The concept of order is implicit in the definition of this class,
and the sth “multidimensional” point in a shape is referred to as the sth
element.

For example, the values in a three-dimensional shape might specify the
mean, range, and standard deviation of pitch in some temporal slice of a
piece. This shape would then be used by another HMSL object to generate
data. One can also use shapes to store pointers to larger musical data types,
such as other shapes, and then apply various transformative procedures to
the “holder’” shape to reorder its component shapes.

The shape class contains many methods for manipulating, editing, stor-
ing and retrieving values. Users often write simple extensions to this class to
implement a new method. The shape class, while musically powerful, is
intentionally a bit austere in the type of morphological manipulations
provided. These are more or less limited to editing operations, transposi-
tion, inversion, reversal, deletion, addition, replacement, scramble, ran-
domization, and a few others. All of these operations have several associ-
ated parameters, such as the range of values in the shape itself, which
dimension to affect, axis of inversion, range of randomization, and so on.

Users can easily write new methods using the tools provided by HMSL
in the preexisting methods for the class. To define a new class, a program-
mer can, for example, simply inherit everything from the shape class, and
write one or more new methods. HMSL is not intended as a library of
musical utilities, but rather as an environment for creating one’s own
libraries. Users write new subclasses of the shape class to include their
favorite algorithmic procedures.”

In HMSL, shapes serve as a fundamental representational construct for
raw data that may include alternative representations of melodic data as well
as high-level formal descriptions of musical processes (Xenakis’s UPIC
system is an interesting example of the way that simple descriptors can
generate an extraordinarily wide variety of meanings [Lohner 1986)).
Future versions of HMSL may incorporate other powerful descriptors of
morphology as standard features, such as the description of morphologies
as pure “contours,” algorithmically in terms of distribution functions, or
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by some standard set ““descriptor’” (such as Forte’s interval vector). These
are all cases where one signifier, for example a given contour, or a given
interval vector, could have many realizations, and it is interesting to con-
sider how the HMSL environment might realize the specifics of these
modes of morphological specification.

COLLECTIONS

If shapes are described as holders of “raw data,”” collections may be
described as holders and executors of “raw’’> morphs. Collections, the
primary heterarchical units of HMSL, are morphs that can contain any
other morph in any “arrangement.”” Collections can be treated (i.e.
executed, put in other collections, transformed) as one entity, so that large
scale formal and scheduling processes are facilitated. Since collections can
include other collections (or structures, players, jobs, and so on) HMSL is
capable of any level of heterarchical complexity.® These complex
heterarchies might be thought of as tree structures in the conventional
sense, with any node on the tree being another artbitrarily nested tree.

Collections have execution “intelligence” called behaviors. Behaviors are
written by the user, although several defaults are supplied in HMSL. The
system-supplied parallel and sequential behaviors execute the component
morphs of a collection either sequentially or in parallel. HMSL supplies
other behaviors as well, such as a random sequential behavior.

User-written behaviors may select any combination of a collection’s
children for execution. These behaviors are quite powerful in the construc-
tion of complex large-scale musical forms, such as those in which the actual
form of a work is dynamically changed by real-time input. (This idea is used
extensively in Polansky’s composition Cocks Crow, Dogs Bark . . . [Polansky
1988]). Other behaviors might check the status of stimuli, alter the config-
urations of heterarchies within the system, change variables, generate mor-
phological data, instantiate objects, or load new functions or pointers in
real time.

Additional features in collections include: 7epeat-count (how many times
to execute their components in a given execution of the collection itself),
weight (an instance variable which is often used by the system to compute
the probability of executing a given collection), and various methods for
editing and maintaining component morphs. Collections may contain user-
written functions (in the form of Forth/ODE/HMSL routines) that are
executed when a collection is begun (start-function), repeated (repeat-
Sfunction) or terminated (stop-function). Other methods allow for customized
scheduling within HMSL.

Since collections are a subclass of morphs, they inherit all the basic
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features of the basic morphological paradigm of HMSL. Most other data
types are a subclass of collections (like productions, jobs, structures, and
players). Attributes like repeat-count and weight are inherited more or less
universally throughout the system.

STRUCTURES

Structures are a subclass of collections, with one added feature, a transition
matrix. For a structure with N components, this matrix is N x N large,
with several methods for maintenance and editing. One of the simplest
behaviors for a collection is to use the weights of component morphs to
decide the likelihood of execution—structures allow the user to combine
this with a probability that one component will be succeeded by another (in
HMSL this is called a tendency). These two values are often used together in
the determination of execution order in a structure. Structures may be
thought of as simple first-order Markov chains, but the associated matrix
could have many uses (as has been demonstrated by graduate students at
the Center for Contemporary Music®). An additional HMSL class, pro-
vided on disk as an optional library, is the Markov class, which provides
useful methods, such as orthogonalization and selection of highest proba-
bility, for pieces that utilize Markov processes.

PRODUCTIONS

Productions are the simplest data structure in HMSL: morphs that con-
tain a list of user-written routines. They provide a simple way of
heterarchically scheduling and executing algorithms, as opposed to only
data (as in collections and structures). Productions contain only a list of
routines, and can contain no other morphs. They are a subclass of collec-
tions, and inherit all the parent class’s methods and features (repeatability,
weight, editing, and so forth).

A production consists of a list of pointers to executable addresses of
Forth words, which may be written in some combination of HMSL, ODE,
Forth, assembler, and so on. The code inside a production may reference
and alter any part of the system (as in behaviors), and can even insert new
routines into the list of the production being executed. For example, this
might occur in response to a given key being pressed on a keyboard, or to
some condition set by software. This is a feature which can be quite
powerful in musical performance situations. Productions can also be used
to change the weights of other morphs, execute other morphs, transform a
shape, alter variables, and so on.
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Productions are useful and powerful in HMSL, as a kind of all-purpose
utility for scheduling software events. The choice of the term “produc-
tion”” was originally derived from formal language theory, where it refers to
a set of rules that specify how morphologies (in HMSL, most often shapes)
might be created and transformed.!® Example 2 illustrates the way many of
HMSL’s data structures can be combined into a heterarchy.

"TopColl"
(Collection)

"OtherColl"
[ (Collection) ]

"Blaster"

"Doubler"
(Player)

"Motifl" "FaLaLa"
(Shape) (Shape)

(Player)
OB.PLAYER Doubler Motif2
OB.PLAYER BLaster (Shape)
OB.JOB Flipper
OB.COLLECTION TopColl
OB.COLLECTION OtherColl
STUFF{ Doubler OtherColl }STUFF: TopColl
STUFF{ Motifl FaLaLa }STUFF: Doubler
STUFF{ Blaster Flipper }STUFF: OtherColl
STUFF{ Motifl }STUFF: Blaster
STUFF{ 'C FlipMotif }STUFF: Flipper

"Flipper"
(Job)

"FlipMotif"
(Forth Word)

EXAMPLE 2: AN EXAMPLE HETERARCHY

“TIMED MORPHS:’’ JOBS AND PLAYERS

An important aspect of collections and productions is the way they deal
with time, which is not at all. Once one of these morphs is executed, things
happen “as fast as possible,” for these morphs have no associated notion of
duration, except for their start and repeat delays. Time in HMSL is left
unspecified until a very low level of data specification is reached. Shapes,
which cannot be executed by themselves (they must be used inside another
morph), have no dimension fixed as time, so that the dimensions of a shape
might be reinterpretable at various times and by various parts of the system,
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in radically different ways. A common HMSL experiment is to use a small
number of shapes, or just one, as the source of all morphological “data>—
reinterpreting that data in a variety of unusual ways.

There are two special subclasses of collections associated with actual time
values: jobs and players. Both of these morphs are said to be “tasked’’ by the
system, because once they are executed, the scheduler continually checks
to see if they need to do something (that is, if a certain duration has
elapsed). This is in contrast to collections, which, once executed, may be
“forgotten about” by the scheduler until they signal that they are “done.”

Jobs. Jobs are the simpler of the two morphs. They are similar to productions
in that they consist primarily of a list of Forth routines, but they also have
an associated duration, which specifies how often their list of functions will
be executed once the job is “made active” (executed). This duration can be
changed in real-time by the job itself, or by any other part of the system; it
need not be static.

A job must “stop itself>’—once it is executed, it will keep on going until
it decides (by a simple protocol) that it is finished. It is also possible for
other morphs and software processes to cause a job to end. Jobs are
excellent for use as background, scheduled tasks. Even though jobs are
among the simplest morphs, they are by far the most used, and are, fact,
similar to what programmers normally think of as a “process,” or “back-
ground task.”” They also have a few other methods associated with them
which allows for more sophisticated interaction with the Virtual Device
Interface (see below), customized scheduling, repeats, and so on.

Players. Players are a more complex, scheduled morph. They are the most
usual means by which shape data is interpreted in time for sonic or other
output. Players consider one dimension of their component shapes as
duration. Once executed, players send, at the appropriate times, the cur-
rent element number of a component shape to an associated instrument.
The instrument may interpret the multidimensional data of this element in
any way. A kind of three-level process typically occurs in HMSL:

RAW DATA — TIMED RAW DATA — INTERPETED TIMED DATA
(SHAPES) (PLAYERS) (INSTRUMENTS)

Players are a sort of “middle management” for general data, allowing
that data to be “patched” to specific interpretations in time. This three-
level approach is highly flexible since the patch itself, and many of its details
(e.g. which dimension to use for duration, offsets, the order of shapes in
the player’s list, the instrument in use, and so on) can be changed rapidly in
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real time from any other part of the system (by jobs, stimulus-response,
productions, and so on). Players may also bypass the “duration dimen-
sion,” and use a specified duration function (user-written) for the sched-
uling of their data.

Duration is usually defined very specifically in HMSL as the elapsed time
between the beginnings of events. This is different from what might be
thought of as on-time, that is, the elapsed time of an actual event. This
concept of on-time can be useful, for example, in the specification of MIDI
note events, which have a specified elapsed time between “note-on’” and
“note-off>* (see Example 3).11

I— on-time-1 -|
—— on-time-2

Pitch

I— duration-1 -—I— duration-2 -|

Time

'y

EXAMPLE 3: “DURATION’’ VS. “ON-TIME’’

HMSL also includes the concept of duty cycle: the ratio of on-time to
duration of an event. In players, there are various ways for the user to
specify and manipulate the duty cycle. One is to specify a ratio of the entire
player, such as 4/5, which tells the player to “turn-off’ the event (that is,
send an “off>> message to its instrument) after eighty percent of the current
duration has elapsed. Nothing will happen in the following twenty percent
of the specified time interval, and then an on message will be sent to the
instrument with the corresponding values for the next element of the
player’s shape. To achieve polyphony, the user may specify a ratio of greater
than 1, which would mean that an event would be turned off after the
“next’” one was turned on. The user may also specify a given dimension of
the player’s shape to use as the actual on-times for each corresponding
element of the shape. In this way, each element of the shape can have a
different duty cycle. This may be edited graphically in the shape editor, or
subjected to the usual software manipulations and controls.
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There are several more sophisticated ways to specify the timing of events
in players, particularly with regards to polyphonic events. This includes the
specification of absolute start times for the occurrence of events, rather than
the conventional specification of relative start time as described above.
(Absolute start times are cumulative times from the beginning of execution
of the player.)

ExecuTi, CREATE, AND PERFORM

Conceptually, the functions of HMSL are divided into three main modes:
Execute, Create and Perform. These are not precisely defined terms, but
ways of describing various features of the system. Execute describes how the
data structures are scheduled, sent to hardware, and interact with each
other and the user in real time. Create describes methods of input and
editing. Perform describes how stimulus-response mechanisms can be added
to the system, to coexist and interact with the other two modes.

EXECUTE

The main mechanism of Execute, and the central scheduling intelligence
of HMSL, is the Polymorphous Executive (PE).12 The PE is a sophisticated
“round-robin”> scheduler, which keeps track of all active objects in the
system in their heterarchical complexity, and tries to accurately schedule
and execute all timed events. It has no theoretical limitations on its
complexity, but since it is essentially a multitasker running on a single
processor, there are practical limitations on how much the system can
handle.

The PE works in a straightforward, message-passing manner. Morphs
execute their children by sending an EXECUTE: message to them. When
those children are finished they send DONE: messages back to their
parents, all the way up the tree. Posting, executing, and management of
the active object list is generally done by the morphs themselves. The
methods for doing this are relatively simple, and the tools are provided for
the composer to invent unusual scheduling and execution interactions
between morphs (this has been exploited by advanced users of the system,
often with unexpected results).

Software Scheduling. With the exception of MIDI and Amiga local sound
output, which use an interrupt-based event-buffering scheme, HMSL uses
nonpreemptive scheduling. Partly motivated by the complex data structures of
the system, it also provides tools for the user to actually alter the funda-
mentals of HMSL’s scheduler, and to make it a flexible and compositionally
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rich aspect of the environment. Since the scheduler is itself written as part
of ODE, the user can easily manipulate the very mechanics of HMSL’s real-
time intelligence. For example, the user might restructure the active object
list itself in response to stimulus, or manipulate system time, and so on—
following the philosophy that HMSL should be as open to user innovation
as possible.

Event Buffering and Time Deformations in HMSL. In scheduling complex
musical events, time deformations can often be caused by an event per-
forming time-consumptive calculations. For this reason, all MIDI and
Amiga local sound ouput in HMSL is event-buffered and interrupt-driven in
a manner similar to that of the language Formula (Anderson and Kuivila
1986, 1988, 1989). This provides for highly accurate timing in which time
deformations are seldom an issue. The HMSL scheduler runs “ahead” of
the real time clock, allowing complex events to be precalculated before their
output is needed. The resulting low-level output events are stamped with
the virtual time of their desired time of occurrence, and stored in the event
buffer until then. By manipulating virtual time (through routines supplied
by HMSL) the user can perform complex scheduling of low-level events.
Other forms of data may also make use of event buffering, but at present
only MIDI and Amiga local sound data is event buffered by the system.

HMSL has other ways of dealing with time deformations of non-MIDI
events, allowing for highly customized response by players and jobs to these
deformations. Various scheduling algorithms are available to each indi-
vidual player or job that deal with time deformations in different ways
(referred to as epochal and durational scheduling, see the HMSL Manual for a
complete description).13

In HMSL, either a hardware or software clock may be used. Simple
routines allow the user to query, reset, and set the resolution of the
hardware clock at any time, allowing full access to the internals of the entire
system’s scheduling mechanisms. Use of the software clock requires users
to increment the clock themselves. This allows for easy synchronization to
other systems, or the performance of complex global algorithmic operations
on heterarchical scheduling. HMSL also has facilities for synchronization
with an external MIDI clock or MIDI time code.

CREATE

HMSL is a “WYSWYH?” (“what you see is what you hear’’) environ-
ment, and implements graphic user interfaces whenever possible. There are
several screens that allow the user real-time graphic editing and control of
data and functions. All of the HMSL graphics are based on an object-
oriented graphics library written inside of HMSL.
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The user has full access to the graphics library, both at the lowest (draw a
line, text, mouse tracking, and so on) and higher levels (various graphic
objects and screens) and may also create her own custom graphics. The
parent class of graphic objects is called controls. Subclasses include menu
grids, check grids, and radio grids, and classes for mouse-controlled numerical
values (such as faders and counters). The user may design control grids and
customize HMSL’s interaction. Controls may be placed in screens (called
Custom screens), and the user may create these as well.

Three predefined graphics screens are supplied by the system: the Shage-
Editor screen, the Action screen, and the Sequencer screen. These, along with
user-created Custom screens, are called from an HMSL menu.

The Shape-Editor screen allows the user to input and edit shapes with a
variety of functions, implementing most of the shape class methods. Users
can cut, paste, copy, replace, scroll, zoom, transpose, reverse, invert, scale,
draw, randomize, and so on. The user’s own custom transformations may
be added to this screen as well. All editing of shapes is in real time, so that if
the shape is being played by the PE, changes will be heard as they are made.
(Example 4 shows the editing of dimension 1, which contains information
regarding ““harmonic complexity’> of a shape called SHAPE-1.14 The user
has selected a specific range of values in SHAPE-1 to edit).

€ File Edit HMSL Custom
S[I==——————— H4th Window
-=< Shape Editor >=-

Set Mode
Insert |Delete

Replace| Select
Rubber RIEIL

Select Shape Dim \

SHAPE-1 1

10 SHAPE-1 Harmonic Complexity 31
] B C

Operations
Cut Copy |[Fests  [+A/B+C |-C*B/A || 2[ 1] 0

Up 1 Down 1 Beuerse| Invert | Scramble| gptions
mzoom <= Pan I Pan = Custom |T:|||/| |Traikl

EXAMPLE 4: SHAPE EDITOR SCREEN

The Perform screen is described below in the section on the Perform
environment. All HMSL screens (the Shape-Editor, Sequencer, Action, and
Custom screens) are accessible to the programmer; by using the graphics
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library, the user can make overlays, additions, or alterations of the screens
provided. (The Amiga version of HMSL also includes tools for integrating
video and animation routines.)

The Sequencer screen resembles a typical MIDI sequencer, but all of its
functions may be customized within HMSL. Typically, it can be used for
16-track recording into HMSL shapes, but MIDI input may be redirected
and redefined in any way in real time, and of course, values recorded into
shapes via this screen may be used to control any aspect of the system.

PERFORM

Perform is the primary mechanism for stimulus-vesponse interaction in
HMSL. The Perform environment consists mainly of two data structures:
actions and the Perform screen.

Actions. Actions'5 are a subclass of productions, and are the basic unit in
custom stimulus-response events. An action consists of a stzmulus and a
response, user-defined Forth routines that must obey a simple protocol: the
stimulus must leave something on the stack, and the response must take
something from the stack. Usually, the stimulus leaves a flag for the
response to use in conditionally deciding whether to execute.

The following is an example of a simple action definition, with line
numbers inserted at the beginning for purposes of explanation below.

1) OB.ACTION MY-ACTION
2) : MY-ACTION.STIMULUS

( -- flag, true if C, false if other note )
3) MIDI.LAST.KEY? ( -- key-value )

12 MOD ( -- key-value-mod-12 )

0= ( -- true|false )
4) i
5) : MY-ACTION.RESPONSE ( flag --, execute if true )
6) IF
7) TIMEQ@ O EXECUTE: MY-COLLECTION
( at this point,one could also use a simpler method, )
( START: MY-COLLECTION )
8) THEN
9)
10) 'C MY-ACTION.STIMULUS PUT.STIMULUS: MY-ACTION
11) 'C MY-ACTION.RESPONSE PUT.RESPONSE: MY-ACTION

12) MY-ACTION PUT.ACTION: ACTION-TABLE
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Comments on the above code:

ey
2

3)

4)
©)

©)

?)

&

Instantiate an action called MY-ACTION.

Start (with a “:>’) the definition of a Forth word called MY-
ACTION.STIMULUS, which will be the stimulus “field’> of MY-ACTION.

Define the word MY-ACTION.STIMULUS. MIDI.LAST.KEY? is another
Forth word which we will assume to have been written already,
which returns the value of the last key struck on a MIDI keyboard
and then resets it to avoid multiple triggerings (see the section on the
MIDI Library below). The modulo 12 of that key value is taken, so
that if it is a MIDI “C>’ or octave of C (12, 24, 48, 60, 72), the Forth
word “ =" will return a “true’” value. If the MIDI key is any other
value, a false will be left on the stack.

End the definition of the Forth word (“;”’).

Begin the definition of the Forth word MY-ACTION.RESPONSE, which
will be used in the response “field”* of MY-ACTION.

Test the flag on the stack at entry. If true, execute the code between
the IF and the THEN.

Execute the job MY-COLLECTION, using the current time as the start-
ing time (TIME@ returns the current system time), and the value “0>
as an #nvoker, meaning that no other morph invokes MY-COLLECTION—
it is the highest level in its “tree.’”” Note that this method EXECUTE:, is
used internally as well by the PE for the heterarchical execution of
morphs, and usually the parent morph is passed as the invoker to the
child morph. This is a good example of one simple way the user can
actually manipulate some of HMSL’s internals. For example, one
could extend this line of code slightly by writing:

MIDI.KEY? 12 / 60 ¥ TIME@ + O EXECUTE: MY-COLLECTION

which would take the MIDI key number, divide by 12, and use that
value (the “octave number’) as a “delay value”’ in seconds (multiply-
ing by 60, which is the number of ticks per second) for the execution
of the collection after the key has been hit. In other words, the lower
the key, the shorter the delay before the collection is executed.
Alternatively, for the same effect, the user could also simply pass this
value to the START-DELAY of MY-COLLECTION.

THEN ends the IF ... THEN construct. This might seem unusual to,
say, “C>” programmers. Forth is RPN, or reverse Polish notation—
which means, in this case, that the code executed in the “true’” case
comes before the THEN.
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(9) End the definition of the Forth word MY-ACTION.RESPONSE.

(10) Use the method defined for the action class, PUT.STIMULUS:, to place
the Forth word MY-ACTION.STIMULUS in the action called MY-ACTION.
'C is a Forth word which returns the executable address of the
following word.

(11) Asin (10), but for the response word.

(12) Place the action MY-ACTION in the action-table (sce below), so that it
may be accessed on the Perform screen in real-time.

This example shows how actions are generally created. The stimulus and
response can be any executable routines, can be quite complex, and can
reference any other part of HMSL, including the current action and all
other actions. In this case, the stimulus comes from someone hitting a
keyboard, but “virtual stimuli’” such as software-generated events are
equally possible.

Actions have many other utilities for experimentation in stimulus-
response interaction, including local and global counters, arguments for
stimulus and response, fields for initialization and termination functions
(Forth words that will execute when action is turned “on’” or “off”” in
software or by the user from the Perform screen), methods for turning
themselves off and other actions on, and many others. In addition, since
actions are a subclass of productions (and thus collections), they may also
have a list of functions, not associated with stimulus-response, which are
executed any time that action is executed, as well as a repeat-count and a
weight.

Action-table and Perform Screen. Actions are usually placed in the action-table
which is defined as an HMSL collection with a few added utilities. The
action-table, when turned on, is executed repeatedly by the PE, which
scans all the actions as fast as possible (concurrent with all other heterarchi-
cal scheduling), and executes them accordingly. Once an action is placed in
this table, it will appear on the Perform screen for user editing. On the
Perform screen actions may be turned on or off with the mouse.

When an action is on (highlighted on the screen), its stimulus field will
be repeatedly executed, and a flag left on the stack will be tested by the
response field to determine whether a response will occur. When an action
is off, it is considered to be “asleep’” and will not execute its stimulus. The
action-table itself may be turned on or off from the screen, turning off the
Perform environment, or all stimulus response activity (at least concerning
actions). Note that actions, unlike jobs, have no concept of time, they just
“do their thing’> whenever they can, depending on their stimulus and
response.
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~HMSLI- B e

-=C ACTION TABLE >=- Pribs on/0ff ode
ee q search 2/' eagle
MIDI Parser delete
voice |flow |JOOTTTSNN | priority+
13
Behavior priority-
Weighted
chaos 0 . Unweighted cl.priority
cl.table
canon
q
o]

EXAMPLE 5: PERFORM SCREEN

One common technique is to use probabilistic stimuli to determine the
general rate of an action’s execution, but there are other ways to achieve
this effect as well. Each action has a local software counter, and the actions
all share a global counter. These can be used for scheduling purposes, in
addition to the many other types of scheduling possible in HMSL. Stimuli
and responses of actions may also have access to the system’s real-time
clock, as well as any other external hardware timer (e.g. MIDI clocks).

The action-table and Perform screen have some other features. The
action-table, which currently has room for sixty-four actions, is divided into
four priorities, of sixteen spaces each. Each of these priorities has a value,
and the four values taken together are used as probability ratios for the
likelihood of execution. For example, the default system priorities are 5, 8,
13, 21 (a Fibonacci sequence)—actions of the first priority will tend to be
executed 5/8 as often as those of the second, and 5/21 of the fourth, and so
on. Actions can be placed in any one of those four priorities by the user
(there are PUT.PRIORITY: and GET.PRIORITY: methods defined for
actions). The default behavior for the action table ignores these priorities,
executing all actions with an equal probability as often as possible. This is
called the unweighted behavior. The weighted behavior, which, like the
unweighted can be selected from the Perform screen, uses the priorities to
stochastically decide which action to execute. Priorities may be changed on
the screen or from software. Actions, once placed in the table, may be
moved from one priority to another on the screen; another screen function
allows for all of the actions in a given priority to be deleted.
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VIRTUAL DEVICE INTERFACE (VDI)

The final major conceptual module of HMSL is the Virtual Device Interface
(VDI), designed to make HMSL as flexible as possible in communicating
with artistically oriented devices, so as not to tie the system too closely to
any specific sonic or other form of realization. Decisions about the specific
application of data are often deferred in HMSL; for example, from shape to
player, from player to instrument, and even within the instruments them-
selves, the main building blocks of the VDI.

The flexible, non-hardware-dependent design of HMSL has facilitated its
application to a wide variety of artistic applications, musical and otherwise.
HMSL could be described as simply a highly intelligent, user-extensible,
general-purpose heterarchical scheduler with a completely open-ended
hardware interface; artists have found it extremely useful for controlling
video, animation, sound sculpture, and other environments. In these
regards, the VDI has been an important concept. By designing the
hardware-specific software tasks in the definition of instruments, these
nuances are kept hidden from the rest of the compositional and scheduling
software, and the task of interfacing algorithmic intelligence with the often
mundane but difficult job of communicating with new hardware is modu-
larized (as in the design of UNIX drivers). The result is that the artist can
spend more time thinking in creative terms about the form and organiza-
tion of ideas, and less about the specifics of device interfaces.

INSTRUMENTS

The VDI mainly consists of the class of objects called instruments, which
make use of many other subclasses as utilities. Instruments are intended to
be the final software stage of most timed data in HMSL, although they can
be bypassed. Instruments can be among the most complicated and sophisti-
cated user software of HMSL; an instrument can be as intelligent as
desired, and do just about anything to its input data. There are many tools
for the design of instruments, as well as some commonly used default
instruments that can serve as easily customizable models for the beginning
user.

Instruments use special functions called interpreters to perform desired
tasks. Interpreters take shape data and usually cause sonic output. An
interpreter is passed three arguments on the stack: the current element
number of the shape being executed (usually by a player, although jobs may
contain instruments as well), the shape itself, and the instrument of which
it is a “’part.”” The interpreter is responsible for deciding what to do with
the »n-dimensional data at a given element number in the shape. The
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interpreter may also make use of the various methods of its associated
instrument, such as those pertaining to offsets, translations, allocation of
“voices’®> and so on, since it “knows’> which instrument it is in (see
Example 6).

— PLAYER
PLAYER watches
clock.
Address of
INSTRUMENT
List
of SHAPES
< /ﬂl\( N
s]{STRUMENT
| SHAPE
SHAPE Data is Adgdress of
10 7 80 Passed by PLAYER Intérpreter
10 5 68 To INSTRUMENT
for Interpretation.
\_ _J
N ) \_l

MIDI Synthesizer or
other hardware

EXAMPLE 6: THE VDI: SHAPE/PLAYER/INSTRUMENT INTERACTION

HMSL includes several predefined instruments which are useful for
simple applications, and serve as templates for user modification and cus-
tomization. These include a class of MIDI instruments, and instruments for
using Amiga local sound.!6 Instrument design has been an interesting area
of experimentation in HMSL. Several users have designed MIDI system
exclusive instruments for complex real-time control of parameters of
various MIDI devices.1”

One of the default instruments, MIDI instruments, illustrates many of
the instrument class features. The interpreter for the MIDI instrument, if
used inside an HMSL player, takes the second dimension of the player’s
shape(s) to be MIDI “note>” (“key,” “pitch’), and the third dimension to
be MIDI velocity. It disregards all other dimensions, and the first dimen-
sion is assumed to be duration (this is fixed in the player). When the player
sends an element number of the shape to this instrument, the values of the
second and third dimension of the shape are sent out as MIDI data.
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A detailed example of Late Binding in an INSTRUMENT and interpreter. The
above is an example of the importance of the feature of late binding,
discussed earlier in the section on ODE. Inside the definition of an inter-
preter, which is just a Forth word that might be used inside many instru-
ments, methods of the instrument class will very likely be used. The
interpreter can’t know which instrument(s) it will be used in, so the
interpreter must assume that information will be passed to it, and must
have a way of using an instrument class method without knowing the
specific name of the instance of that class in which it is being used. For
example, one interpreter could be used in multiple instances of the class of
MIDI instruments (INS-MIDI-1, INS-MIDI-2, et cetera). The interpreter
must have a way of querying the object which uses it for that object’s
particular identity. Late binding is almost always used in this circumstance.

For example, the following simple interpreter definition takes the second
dimension of a shape (which here is referenced as 1, since counting starts
from 0), and sends that value as pitch to a MIDI device, added to the
current offset value of its instrument, with a random MIDI velocity
between 30 and 80. The value in the fourth dimension is used as MIDI
program value, selecting a preset on the current MIDI device. This inter-
preter thus assumes the shape to be four-dimensional (consisting of dura-
tion, pitch, velocity, and program, though the actual velocity values of the
shape are not used!).

1) VARIABLE CURRENT-INSTRUMENT
2) : MY-INTERPETER ( element# SHAPE INSTRUMENT -- )

3) current-instrument ! ( -- el# SHAPE )

4) get: [] (--dpvpr

5) current-instrument @ put.preset: []
(--dpv)

6) drop ( --dp)

7) current-instrument @ get.offset: []

( -— d p offset )

8) + ( -- d ptoffset )

9) 80 30 wchoose midi.noteon ( --d)

10) drop ( --)

11) ;

Comments on the above code:

(1) Define a variable called CURRENT-INSTRUMENT.
(2) Define a Forth word called MY-INTERPRETER, with the conventional



HMSL: A Theoretical Overview |59

interpreter stack diagram (on entry: el# shape instrument, with the
el# on the bottom of the stack).

(3) Store the instrument in the variable for later use (popping it from the
stack).18

(4) Use the GET: method for shapes, which retrieves the multidimen-
sional values (as successive stack entries) at the specified index from
the specified shape. Note that this is also an example of late binding:
the interpreter has no way of knowing which shape it will be inter-
preting. “d,” “p,” “y,”” and “pr’’ stand for what these values are
assumed to represent: duration, pitch, velocity, and MIDI program.
With the exception of this fourth dimension for program data, this is

a common HMSL format for shape data in MIDI situations.

(5) Send preset data to the current instrument. Note that PUT.PRESET: is
a predefined HMSL method for MIDI instruments, which makes it
relatively simple to change presets.

(6) Drop the velocity value from the stack (this interpreter will supply a
random value, and ignore what is in the shape.

(7) Retrieve the instrument from the variable, placing its address on the
stack. Late bind the methods GET.OFFSET: to that instrument, which
returns a value stored in the instrument’s offset instance-variable,
used for switching keys, transposing, and so forth.

(8) Add that value to the value of the shape’s second dimension
(“pitch”).

(9) Choose a random number between 80 and 30 for velocity, and send
the offset pitch and that random velocity to the MIDI library com-
mand, MIDI.NOTEON, which has the stack diagram: ( pitch vel --), and
sends those values to a MIDI device. (At this point a more sophisti-
cated method, NOTE.ON: could have been used, which keeps track of
the values of pitch and velocity for a current instrument ,so that notes
can be later turned off. I choose the simpler MIDI.NOTEON for this
example to illustrate the use of low-level MIDI words in interpreters.)

(10) Discard the duration value in dimension 0 (it was presumably already
used by the player to know when to actually call this instrument and
interpreter.)

(11) End the definition.

Interpreters are a powerful tool for radically manipulating input data.
Interpreters can serve as drivers for almost any hardware (e.g. video,
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animation, analog synthesis, conventional score-oriented note files, et
cetera). They are a way of sending data in real time to any real or virtual
device, in any format. Interfacing the language to unusual hardware and
reinterpreting simple data in unusual ways are two of the most interesting
ways HMSL has been used.

The instrument class is quite extensive, with a wide variety of utilities.
These are extensively documented in the HMSL manual and elsewhere
(Polansky 1987b; Polansky, Burk, and Rosenboom 1987). Some of the
tools are briefly described below.

Translators and other instrument utilities. Translators are a subclass of arrays
that take in one value and return another. They may be used for translating
indices into scales, or for any other type of function. Typically they convert
from one numeric system to another. Examples might include converting a
generic note index to a MIDI value in a specific set of pitches (i.e. gamuts
in instruments), or converting a note index to a pitch or period value for an
instrument with a given tuning.

Translators are used inside instruments and interpreters, and are table- or
function-driven: they may look up their values or generate them. They also
have a DETRANSLATE: method for performing an inverse function. This is
only the case with table-driven translators—a DETRANSLATE: method would
have to be written by the user for a function-driven translator. Subclasses of
the translator class include the classes tunings and tuning.ratios. These
facilitate experimental intonation in HMSL instrument design (Polansky
1987b). There is also a powerful class, also a subclass of arrays, called
allocators, which is extremely useful in instrument design for deciding how
many voices to “allot,” and how to share these voices among several
instruments.

OtHER HMSL LIBRARIES
HMSL includes several libraries and utilities, in order to aid users in
designing their own software. A few of these will be briefly described here.
MIDI
The MIDI library is a set of Forth words that fully implement the MIDI

standard. From anywhere in HMSL one can write something like the
following:
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1 MIDI.CHANNEL!
30 MIDI.PRESET
40 56 MIDI.NOTEON

This will change the ““current”> MIDI channel to 1, change the preset on
the device communicating on channel 1 to “preset 30,19 and send the
MIDI key value of 40 and the MIDI velocity value of 56 to that device. The
user has access to the MIDI toolbox at all levels of code, from high-level
words such as the above, to lower-level words which send MIDI bytes and
so on. HMSL also fully supports the MIDI Standard File Format, and
allows for capturing pieces generated by HMSL to MIDIFiles. As stated
above, MIDI output in HMSL is event-buffered, and on the Macintosh,
utilizes the Apple MIDI Manager.

MIDI Input Parser. HMSL also includes a flexible utility for MIDI input,
called the MIDI Input Parser. This feature allows users to vector any
incoming MIDI data to their own routines. All of the functions in the
MIDI standard are included in the HMSL MIDI parser, but none of them
need be defined conventionally.

For example, a note from a MIDI keyboard can “control’ the corres-
ponding note on another keyboard, or in other words, to use the HMSL
like a giant “MIDI thru,”” one would place the following simple routine in
the appropriate MIDI input vector:

'C MIDI.NOTEON MP-ON-VECTOR !

(Comment: Place the address of the Forth word MIDI.NOTEON, which has
been discussed above, in the MIDI parser “on vector.””)

In this way HMSL echoes the note and velocity from the MIDI device
connected to MIDI “in”’ to the device connected to MIDI “out.”” A slight
variation on this simple example is to exchange velocity and keyboard
values, so that the harder a key is hit the higher it sounds, and the “pitch”
of the key struck directly corresponds to loudness:

: EXCHANGE.MIDI.P/V
(pv --, MIDI note with swapped values )
swap (pv--vp)
midi.noteon
i

'C EXCHANGE.MIDI.P/V MP-ON-VECTOR !
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It can be seen, with a bit of imagination, that with this generalized MIDI
parser, complex MIDI input data can be interpreted intelligently and
complexly. Since there are vectors for every MIDI command, including all
of the system-exclusive commands, MIDI becomes less a restrictive “stan-
dard’’ in HMSL than a general form of user-defined data exchange. The
MIDI parser runs concurrently with HMSL, so that it is always parsing the
MIDI input stream and executing the routines in the proper vectors. Other
parts of HMSL, like actions, jobs, and productions, can change the execu-
table addresses in the MIDI input parser vectors, so that the actual inter-
pretation of MIDI input data can be dynamically controlled in real time in
response to stimuli or algorithmic ideas. The MIDI parser itself can be
turned on or off from any HMSL screen.20

System-Exclusive Data. Another important aspect of the HMSL MIDI
environment is the ease with which system-exclusive data, particularly that
which alters MIDI parameters in real time, is created and integrated into
the system. This approach to MIDI is becoming more and more important
as MIDI becomes more widespread in the computer music community and
composers become more dissatisfied with the “program’> notion encour-
aged by the MIDI concept of “note on in a given timbral configuration.”
This has sometimes been referred to (pejoratively, and to some extent,
justifiably) as an “organ” approach. It encourages the user to first
“define’” an instrument that has a more or less fixed set of timbral
attributes (though they may of course be enhanced and extended through
the use of controllers and so on).

Even though many MIDI devices allow extremely dynamic, temporally
evolving patches and programs, it is often difficult in the MIDI context to
create processes that can control timbre independently of “note”” events.
Even the term “note,” in the context of MIDI, is a semantic and protocol
distinction that many composers and musicians find to be awkward at best,
and pernicious at worst. HMSL, through the use of custom instrument
definitions which often include system-exclusive code, allows the user to
completely redefine what a MIDI event is—which may not include pitch or
velocity at all.

SCORE ENTRY SYSTEM

HMSL contains a feature for entering musical data in conventional ways
using note names, rhythmic values, and so on, called the Score Entry System
(SES). The SES is a computer-keyboard-based system, and is similar to
several other such environments in the ways it represents musical data. The
SES runs in Forth, so that Forth, ODE, and HMSL routines may freely be
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embedded in scores, and this creates further interesting possibilities for the
creation of algorithmically generated pieces. Data entered in the SES is
accessible to all of HMSL’s data structures, and scores typed in from the
computer may be played immediately as well. The SES is often used for
filling shapes with melodic data.

OTHER UTILITIES

As stated above, HMSL includes a complete library for Amiga local
sound and sampling. Phil Burk, in collaboration with Tom Erbe and
composer Nick Didkovsky, has also successfully used HMSL to generate
CSOUND score files for the Macintosh II. Some of the other important
miscellaneous utilities provided in HMSL include:

(1) several standard distribution functions
(2) linear interpolator and other simple math routines
(3) complete support for real-time-clock control

(4) various and miscellaneous hardware support drivers, like those for
parallel and serial ports

(5) support for various file standards, in particular the IFF and MIDIFile
standards

(6) file transfer utilities for use in sharing code and libraries

(7) Motorola 56001 USP support.

The Forth compilers used for both the Macintosh (Phil Burk’s HForth)
and Amiga (Delta Research’s JForth) versions are robust in and of them-
selves, supporting most of the features of the two machines. They include
debugging facilities, floating-point support, command-line history, and file
support. The Amiga version includes an optimizing target compiler which
is quite useful in making compact executable images of pieces for perform-
ance situations.

SOME SAMPLE APPLICATIONS AND PIECES

This final section briefly describes some sample applications and pieces
developed by composers working with HMSL. This is not intended as a
comprehensive list of such work. Since HMSL has many hundreds of users,
an exhaustive catalog of work done in it would be impossible at this point.
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However, it is hoped that the following will show some of the experimental
possibilities of the environment.

SWIRL BY PHIL BURK

Swirl exploits HMSL’s ability to transform melodies in an unusual way.
The source melody in this piece is considered to be a set of points in a time/
pitch space. This set of points can be slowly rotated using a two-
dimensional transformation matrix most commonly used in computer
graphics. A rotation of 180 degrees is equivalent to a retrograde inversion.
The continuous rotation can be controlled by the performer during the
performance while a graphical display shows the melody at its current angle.

ADAPTIVE-TUNING MIDI APPLICATION BY PHIL BURK

Burk’s adaptive-tuning software utilizes the fractional tuning capability
of the Yamaha FBOl, and with simple modifications to the underlying
system-exclusive routines, could be easily modified for other MIDI-tunable
devices. It allows a performer to play in any just-intoned or absolute tuning
system using a MIDI keyboard. The system supports an “adaptive tun-
ing,””> where the tuning ratio for a given interval is kept constant, irrespec-
tive of any concept of absolute pitch, much in the same way that a choir
might adaptively drift by a comma or two over the course of a piece.

ROBERT MARSANYI’S UNITS AND DAVID ROSENBOOM’S
“COMPOSITIONAL TOOL-KIT”’

Robert Marsanyi has developed the notion of #nits in HMSL. These are
similar to the standard MUSIC N idea of a unit generator. Units are
arbitrarily complex software objects with graphic interfaces that allow them
to be patched together on-screen like analog-synthesizer modules. These
units may process or generate data in any format, including, but not limited
to, sound samples and MIDI data. Units produce files in standard formats,
such as IRCAM, MIDIFile, or Apple AIFF sound files. When used for
synthesis or signal processing, these files may be downloaded to any one of
a number of standard digital signal processors or converters. Phil Burk and
Tom Erbe of the Mills CCM have developed a Macintosh II hardware and
software interface for a 16-bit analog-to-digital and digital-to-analog con-
verter (produced by Micro Technology Unlimited). HMSL, and the units
in particular, can make use of this interface for playback or recording of
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large sound files to and from disk. A facility for compiling unit structures
into packages of code for the Motorola 56001 digital signal processor has
also been implemented.

Marsanyi’s units are also being used to create morphological transforma-
tion tools. MIDI input may be received in real time, processed, and played
back with any of the performance tools provided by HMSL. This greatly
facilitates interactive-performance works within a wide range of composi-
tional designs.

David Rosenboom has designed a compositional tool kit as an extension
library for HMSL. This tool kit consists of a variety of interesting genera-
tive and transformational software modules derived from Rosenboom’s
own musical work and generalized to have the broadest possible
applicability in performance and composing. Marsanyi and Rosenboom are
programming this tool kit as a set of HMSL units, which makes the items
in this tool kit fully integrable with each other. All composition data
generated or processed by any given UNIT can be input to any other unit
in the tool kit. Tools may be freely mixed and imbedded inside parts of a
compositional form. Most of these constructions are fast enough to permit
them to be animated in real time. Consequently, the difference between
programming for composition and programming for performance is
limited.

TWO PIECES BY DAVID ROSENBOOM

Zones of Influence. Many of the above tools are kept relatively simple, but
can be combined to make complex structures. Some examples of the more
complex and unusual tools included in the kit are the following. Many of
these are used in the piece for percussion soloist and computer music
system, Zones of Influence (Rosenboom 1984-86).

Transformers: a system for nonlinear, interactive transformation of
musical parameter contours with optional classification of results
according to the types of contrapuntal variations on musical lines that
are produced

Evolvers: a system for gradually transforming one musical parameter
shape into another shape, including a variety of methods by which the
shapes can be made to evolve with any mixture of stochastic or
deterministic controls

Combinatorics: a variety of set operations

Pattern Matcher: a pattern-detection system, developed by Marsanyi,
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for recognizing musical patterns, especially useful for sensing pattern
input during live performance

Stochastics: a variety of stochastic canons optimized for live perform-
ance, including a software emulation of the classic Buchla Source of
Uncertainty analog-synthesizer module

Proportional Structures: a system enabling the creation of a composi-
tional form from the top down; a series of &ins—definitions of time
segments—can be constructed in an hierarchical arrangement (i.e. bins
may be put inside other bins), the lengths or sizes of which are
specified in proportional or absolute terms; HMSL-type musical
structures can be stuffed inside the bins to unlimited degree; bins may
be restructured by changing their position, arrangement, or size
descriptions; all musical material contained in the bins is automatically
rescaled to fit a new description

Concept Spaces: a system for mapping arbitrarily selected musical
“objects” in a multidimensional scaling representation

Markov Mapper: a very fast and easy-to-use tool for specifying nth
order sequential dependencies of musical events probabilistically using
HMSL-type shapes (due to an elegant algorithm suggestion by Phil
Burk).

Systems of Judgement. A recent musical work by David Rosenboom which
makes use of HMSL and the notion of concept spaces is Systems of Judge-
ment. This sixty-five-minute work (Rosenboom 1989) was realized with a
variety of HMSL-controlled electronic as well as acoustic instruments.

A particularly interesting conceptual paradigm guided the creation of the
musical form. It attempts to elucidate parallel views of evolution by exam-
ining and speculating about processes which we, any organism, or any
system, must use to learn to make differentiations, be self-reflexive, and
arrive at judgements from which language may be formulated.

The counterpoint of the form is conceived in a multi-dimensional con-
cept space linking three views of evolution. The first focuses on an
ontogenetic view, the evolution of the individual of a species. The second is
a stochastic view of evolution by probabilistic processes. The third is
symbolic of social organization. It attempts to juxtapose a scale of primitive
to advanced imagery against the other two views and provide a counter-
point of semantic references that examine ideas of meaning and context. At
the highest, conceptual level of the composition, these three views are
mapped on the axes of a three-dimensional space. The actual music which
results follows a trajectory in this space, from the origin to the upper right
corner. At any given time, the music contains a mix of sound images
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Systems of Judgement

appropriate for the values of the coordinates referencing a particular point
on the trajectory.

Subsequently, this material is realized by activating HMSL programs that
have been individually constructed for various points on the three axes and
integrated under a common performance-control structure. On a more
concrete level of musical form specification, this approach to multidimen-
sional scaling is being developed as a generalized tool for HMSL. The intent
is for the user to be able to define axes on which selected musical param-
eters are scaled. Degrees of similarity among musical objects may also
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correspond to their distances apart in the space under a defined metric
(Polansky 1987c; Polansky, Rosenboom, and Burk 1987). Eventually, by
moving objects in the space, the necessary parameters may also be updated.
For the method to have great generality, however, the user must be able to
arbitrarily specify the meanings of the axes defining the space, regardless of
how simple or complex their subparameters may be. Consequently, a great
deal of effort is going into constructing a software approach which allows
any linking of multiple variables from arbitrary points in an HMSL hier-
archy in order to specify how values for a given axis are generated. These
correspond to what are termed the order parameters of a phase space in
dynamic systems theory.

Rosenboom is currently working on interfacing HMSL with EEG sens-
ing equipment to continue much of the research he did in biofeedback and
the arts during the 1960s and 1970s (Rosenboom 1976, 1990). The revival
of this work is now focused on production of a large-scale, self-organizing
opera, On Being Invisible I1. This work, which is based on Rosenboom’s
mid-seventies biofeedback piece, On Being Invisible (Rosenboom 1977a,
1977b, 1984), involves an extensive, real-time algorithmic composition
system. Elements of the system include: a principle component analysis of
auditory event-related potentials from the EEGs of performers; a model of
musical perception, based on parametric-difference detection, pattern anal-
ysis, and a memory-persistence algorithm; and a hierarchical musical-
structure builder that constructs a complex musical form based on shifts of
musical attention detected in various performers. All of the musical form
building and performance aspects of this project are being programmed in
HMSL. HMSL’s stimulus-response environment is being employed to
design networks in which musical processes are affected by neurological and
biological functions. This work is described in Rosenboom 1990.
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NoTES

1. An important concern was “input structures’’—the ability of the
system to respond to a wide variety of kinesthetic, software-
generated, and electronically generated stimuli. This is a particularly
interesting aspect of some of the electronic instruments built by
Rosenboom and Donald Buchla, most notably the TOUCHE, a
keyboard-based instrument that was extremely flexible in its response
to digital and analog input. The pioneering work of Rosenboom,
especially in his music with brainwave and other biofeedback control
mechanisms, and Donald Buchla (and his associate, programmer
Lynx Crowe), was a starting point for the design of the more general,
completely software-based stimulus-response features of HMSL.

2. Some of the composers who had used Forth extensively in the 1970s
include Jim Horton, John Bischoff, Tim Perkis, and Rich Gold (these
four made up the League of Automatic Composers in the San Fran-
cisco Bay Area), George Lewis, Bill Maginnis, Joel Ryan, Donald
Buchla (Lynx Crowe’s MIDAS language for the Buchla 400 digital-
keyboard synthesizer is written in Forth), Martin Bartlett (who has
also written a music language for the Buchla 400, called MABEL),
Ron Kuivila, David Behrman, and many others.

3. For the past ten years, the Mills CCM has hosted a series of guest
lectures called the Seminar in Formal Methods, frequently about live
interactive computer-music systems (Polansky and Levin 1987). The
ideas presented in that series have inspired various aspects of HMSL,
and the language has benefitted from the community of artists and
thinkers who have visited and worked at the CCM in recent years.

4. Nearly simultaneously with HMSL, two other Forth-based small
computer real-time computer-music languages have evolved. They
are well worth noting here, because of their importance and because
of the similarities and differences in design philosophy with HMSL.
David Anderson and Ron Kuivila’s FORMULA, first written for the
Apple IT and later ported to the Atari 1040ST and the Macintosh, is a
““process-oriented”’ language, with sophisticated and accurate sched-
uling. Like HMSL, it allows the user to write his or her own music
code. FORMULA’s emphasis seems to be an elegant economy of
words (it exists as a small superset of Forth), and an extremely
accurate multi-process scheduler, which reflects its authors’ theoreti-
cal ideas in this regard (Anderson and Kuivila 1986a, 1986b, 1989).
FORMULA'’s scheduling ideas have influenced those of HMSL some-
what (in fact Ron Kuivila worked a little on the prototype of HMSL
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at the CCM). HMSL’s MIDI event-buffering system is in part
inspired by FORMULA, but the greater complexity and diversity of
system data structures in HMSL, each with its own scheduling
“intelligence,” has made general event-buffering a more difficult task
of HMSL than for FORMULA, where there is fundamentally only
one type of musical event data structure, the “process’ (Anderson
and Kuivila 1988), albeit a compact and tremendously flexible one.

MASC, developed by Daniel Kelley and Allen Strange at San Jose
State University, is a small, extremely portable, and very useful
Forth-based language. MASC has the ability to easily specify arbi-
trary envelopes for any parameter, from timbral to formal. MASC
was originally written as a hybrid-control language, and later adapted
to a MIDI environment. MASC also allows for user-written FORTH
code. Since it is written in public domain Forths for each of its
implementations (unlike HMSL), and is itself public domain, it is
free, and easy to port to almost any small system (in contrast to
HMSL and FORMULA, each of which exist on only two machines,
and are more difficult to port). Its data structures are also less
extensive than HMSL’s (and thus, to its credit, much easier to learn).
Like FORMULA, MASC offers the user a standard Forth environ-
ment as a programming language. For an interesting overview of
these languages, and several others, see Scholz 1988.

These languages, together with HMSL, are evidence of the tre-
mendous interest in music language design for small computers that
started around 1980. It is interesting also, that none of these imple-
mentations adopted the philosophy of “application” or “program”—
they all assumed the user’s ability to program in Forth. This philoso-
phy has unfortunately been almost completely disregarded—to the
detriment of a certain type of musical experimentation—by the many
music software companies that have sprung up following the wide
acceptance of MIDI.

. Other programming environments can be used simultaneously within

HMSL. All versions of Forth used in the various implementations
include full-featured 68000 Assembler environments, which are often
useful for user-designed custom hardware control, speed-critical
applications, and so on. The Amiga version supports the calling of C
structures from HMSL, particularly for use of the machine’s libraries,
and the Macintosh version has a similar facility. Users have imple-
mented other high-level languages, like a version of LISP (by New
York composer Nick Didkovsky), within HMSL. A 56001 assembler
is currently being integrated into certain HMSL environments.
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6. We have begun to think, rather informally, that the word “hierarchi-
cal” is a slight misnomer. HMSL’s data structures are all indeed
holarchical, or more precisely, heterarchical, meaning that most data
types can be contained in, or can contain almost any other (for a
related interpretation of these terms, see Abraham 1986 and 1987).
The word hierarchy suggests, to some extent, the notion of “author-
ity,” or more applicably here, a notion of rigidity of organization of
data levels, implying that some data-types are “larger’> and more
“powerful” than others in a formal sense. The choice of the word
“hierarchical’ reflects the authors’ current theoretical thinking at the
time HMSL was designed, some ten years ago, and was partially
derived from the theoretical ideas of James Tenney (Tenney 1987;
Tenney and Polansky 1980). However, Tenney himself has revised his
thinking, and has stated that he would like to replace all occurrences
of the work hierarchical with holarchical in his earlier work.

7. Examples of this are Polansky’s class of Metric-Shapes, which contain
methods for morphological metrics (distance functions) between
themselves, and which are used in the piece 17 Simple Melodses of the
Same Length (Polansky 1988), and Henry Lowengard’s SCRAMBLE:
method. This was originally an unimplemented method on the Shape-
Editor screen. Lowengard wrote his own, which then became inte-
grated, after some modifications by Burk, in the canonical version of
the system. This is also a good example of the way that users have
contributed to the development of the language itself.

8. There is one notable exception to this statement about “heterarchy of
any complexity,”” which is that no morph may contain itself anywhere
in its “lineage,” either as a child, grandchild, great-grandchild, or any
generation of uncle, aunt, nephew, and so on. In other words, no
heterarchical morph may execute itself while it is currently executing
itself. Obviously, from a programming standpoint, this would invoke
a kind of infinite loop. From a musical standpoint, trying to find a
way to include recursion, while philosophically intriguing, seemed
unnecessary, since morphs can be created and rearranged by the
system easily (with dynamic instantiation, and by the various intel-
ligent morphs). In the current version of HMSL, if a morph is
executed while it is already being executed (that is, if it is already in
what is called the active object list), the first occurrence of the morph
will be stopped, and the new occurrence will start from the begin-
ning, like plucking a string while it is still vibrating. This procedure,
incidentally, relieves the user from the burden of worrying about
whether a morph ever includes itself, for if it does (perhaps by
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inserting itself in response to some virtual or physical stimulus), it will
simply abort the execution of the higher-level occurrence, and start
over again. This means that in fact, morphs can be “arranged”
recursively, but that no real recursive execution takes place.

An example of this is in some of the work of Steven Miller, a recent
graduate student in electronic music at Mills, who has made excellent
use of structures in creating long, “ambient’ music environment
installations. Miller’s structures, in a recent piece called Motion/Stasis
make decisions based on a combined measure of the weight and link
tendencies of component morphs, and choose new behaviors for the
structure itself based upon these values.

“The productions [in a phrase-structure grammar] are grammatical
rules that specify how sentences in the language can be made up....A
production specifies that string o can be transformed into string §
(Liu 1985, 53-54). In HMSL, we originally considered shapes to be
a kind of analog to linguistic strings, and that our productions would
transform shapes and combine them into larger morphological units
(“sentences’).

This definition of duration is not restrictive in HMSL, the composer
may define the concept in any number of ways depending on how he
or she wishes to describe timed musical events. For example, the on-
times of events may be longer than their durations, resulting in simple
polyphony. The definition given here is most useful in describing the
way that simple, canonical versions of players schedule “next events,”
but it is easy to extend, both conceptually and practically within
HMSL.

Flurry (1988) points out that in object-oriented programming the
term “polymorphism’’ has a more general meaning: that the same
method sent to objects of different classes has different results.
Although this sense of the term does not apply to the way we refer to
the HMSL scheduler, it nevertheless accurately describes the way that
various types of MORPHS are scheduled: most of them have the
same methods, like EXECUTE: and DONE:, which take very different
forms for different MORPHS.

The term “epochal” is borrowed from Tenney (1987, 106): “Epoch
refers to the moment of occurrence—in the ongoing flow of experi-
enced time—of any musical ‘event,” compared to some reference
moment such as the beginning of the piece.”

The shape in this illustration is taken from Polansky’s Cocks Crow,
Dogs Bark, This All Men Know, but Even the Wisest Cannot Tell Why
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Cocks Crow, Dogs Bark, When They Do (Polansky 1988) for several
interacting computers and voice (which controls and is processed by
the computer network). This piece, a collaboration with composer
John Bischoff and poet Melody Sumner, will be described in a future
article on Polansky’s work. This particular dimension of this shape
controlled the harmonic complexity of a four-part chord by
stochastically selecting higher and higher prime partials depending on
values in that dimension.

As in the choice of the term “production,” the term “action’” has its
genesis in the fields of artificial intelligence and cognitive psychology
(e.g. McCulloch and Pitts 1943), but has been modified for use in
HMSL.

The Amiga has four 8-bit DMA sound channels, all under software
control in real time. Although it is not high-fidelity sound, this is a
flexible tool for experimentation in the areas of sampling, synthesis,
and intonation. HMSL includes support for these local sound librar-
ies. For more information on the Amiga internal sound, see the
Amiga manuals themselves, or any one of a number of articles written
in the various trade magazines.

An example is Polansky’s real-time system-exclusive implementations
for the Roland DEP-5 and Yamaha FBOI, which have been used in
several live works such as Cocks Crow, Dogs Bark. . . . and Simple Actions
(Polansky 1988). Another example is a system-exclusive implementa-
tion for the Roland S-50 digital keyboard instrument, created by
Jeanne Parson, a graduate student in electronic music at Mills Col-
lege. Parson’s code allows for powerful real-time parameter modifica-
tion of that instrument that would not normally be possible. Parson
used this code extensively in a work for violin and electronics titled

Levels of Complexity.

Forth programmers will note that this is not particularly elegant
Forth code. The use of local variables, or a few simple SWAPs and
OVERs (stack manipulation words) would be more conventional Forth
style, but global variables and a more straightforward style keep this
example conceptually simple.

“Preset’” is synonymous with ““program’” in MIDI, but there is also a
command called MIDI.PROGRAM, which, illustratively enough, is
defined as:

: MIDI.PROGRAM MIDI.PRESET ;
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This shows one of the advantages of the Forth environment for
music—anything can be renamed, or aliased, trivially, and the user has
rapid and extraordinary control over the taxonomy and nomenclature
of musical ideas. If one does not like the terms “collection,”’
“shape,” “structure,”” “production,’ it is trivial (and in fact, to some
extent, encouraged by us) to customize these terms to, for example,

Ward, June, Wally, and The Beave.

One aspect of the design philosophy in HMSL is to make everything
as “open-ended” as possible, providing an environment for the
widest possible range of experimentation. The MIDI parser is a good
example of this: the restriction of a one-to-one software corres-
pondence between the MIDI standard and what actually ““happens
is avoided entirely, and MIDI becomes, in some sense, just a nonsoft-
ware defined, inexpensive hardware interface. This does not mean
that one does not adhere to MIDI conventions, but that one can
extend them as far as desired. The facility for generalized interpreta-
tion of input data is of paramount importance in the design of real-
time computer-music languages.
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