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Introduction 

Historically, scales and tuning systems throughout the world have evolved 

according to number of constraints, including: 

1) a fixed set of possible pitches  
2)  a set of “ideal” tunings for certain intervals 
3) a set of cultural and/or theoretical weights reflecting the importance of 

certain intervals, and “keys” 
4)  a value (e.g. the octave) around which scales repeat 
5) the ability to begin  “scales” in the system on different pitches 
 
This paper describes a mathematical formulation of this idea of a tuning system, 

and a corresponding algorithm for optimizing tuning systems according to these 

criteria. Implicit in the notion of constraints and optimization is a distance function 

or metric according to which we can judge a “best” choice. We will present a 

formulation in which we are able to obtain a unique solution to this problem 

(“deterministic” in the sense of obtained as a solution to a particular set of 

equations), and then demonstrate the derived tuning system using a real-time public 

domain software application that we have developed for this purpose.1In addition, 

we will present several examples of usual and unusual optimal tunings, and 

compare them mathematically and musically to well-known historical models. 

Finally, we will discuss ramifications of this technique for music theory, 

composition, and ethnomusicology. 

To give our work some context, we proceed from the thesis that it is possible to 

take the view that western music tunings, and the evolution from just intonation, via 

mean-tone, through well-temperament, and finally to 12-tone equal temperament 

may be seen as a gradual and continuous attempt at resolving an embodiment of the 

                                                
1 This software, and other materials relating to this research can be found at 
http://music.dartmouth.edu/~larry/owt 
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constraints listed above. In a sense, well-temperaments remain the most 

sophisticated solutions to the “tuning problem,” since they attempt a resolution in 

the most complete way. They are also the most difficult tuning systems to design, 

and perhaps as a consequence, had a comparatively short historical life. 

By examining the idea of well-temperament in a general and mathematical way, 

we suggest a well-defined approach to achieving the optimal resolution of a system’s 

constraints. Informally, this is a way to make the “best” possible tuning system, 

given some well-defined ideas of what “best” might mean. Among other things, we 

are interested in describing a method for the development of classes of scales and 

tunings of use to composers and scholars in many ways (including computer-based 

adaptive tunings, and the analysis of tuning systems around the world). 

Well Temperament and the “Historical Tuning Problem” 

Almost all tuning systems (even those not based on simple primes and rational 

ratios), whether explicitly or implicitly, need to accommodate a basic number 

theoretic fact: given two distinct primes p, q, there are no positive integers m, n, such 

that pm = qn.  This implies that any finite tuning system containing more than one 

prime will at some point be “out of tune” with itself. The most well-known example 

of the problem is the “wolf-fifth,” central to the development of tuning systems. 

In this sense, all tuning systems are compromises (e.g., mean-tones, well-

temperaments, and finally, 12-ET). Our framework suggests a formal and 

mathematical approach to finding a compromise: optimization. By stipulating a 

simple set of formal criteria (see Figure 1), we develop a formal theory for tuning 

system construction.  

Tuning Matrices and Error Functions 
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One way to view a tuning system is as a half-matrix of relationships. More 

precisely, for n pitches, there are (n2 – n)/2 intervals. The size of an interval may be 

written in the appropriate position in a pairwise-relationship matrix. A 12-note scale 

has 12 minor 2nds, 11 major 2nds, and so on. For example, consider the well-known 

well-temperament Werckmeister 32 (see Figure 2). From its matrix we can compute 

an error matrix, comprised of the distances between actual and ideal intervals (see 

Figure 3). 

The error matrix in Figure 3 quantifies W3’s deviation from its ideal tunings. The 

sum of the entries in the matrix (after appropriate weighting) is the error function — 

a measure of how well a tuning fits its own “design” criteria. By minimizing that 

error function, we optimize the error matrix. This suggests a procedure for evaluating 

and creating tuning systems parametrically, according to explicit criteria. A tuning 

system is thus described by and created from its higher-level features rather than its 

actual pitches (see Figure 4). 

 We describe a general mathematical solution for minimizing the error function, 

based on a least squares approach. The advantage of least squares is that it admits 

an analytic solution (other optimality criteria may require the use of non-

deterministic approaches, such as genetic algorithms, which we have also 

implemented). We see this as a general result in the field of tuning theory, providing 

a kind of “theory of all tuning systems,” for a fairly general definition of “tuning 

system.” 

                                                
2 Rasch, Rudolf, editor. Andreas Werckmeister, Musicalische Temperatur, 1691, Utrecht, The 
Diapason Press, 1983 
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FIGURES 

Figure 1: Criteria for Tuning System Optimization 
• repeat factor  (e.g., an octave) 
• set of "desired" or ideal ratios I1, … In ( = (number of pitches) -1) for intervals (that 

is, all intervals between scale pitches) 
• set of relative weights for these intervals i1, … in  
• set  of relative weights for “keys,” k1, … kn or the fixed pitches in the scale to 

which intervals are measured 
• fixed number of pitches n + 1 (e.g., a scale, which has one more pitches than the 

number of intervals) 
 

 

Figure 2: W3 as a ½ matrix 

 C C# D Eb E F F# G Ab A Bb B C 

C  90 192 294 390 498 588 696 792 888 996 1092 1200 

C#   102 204 300 408 498 606 702 798 906 1002 1110 

D    102 198 306 396 504 600 696 804 900 1008 

Eb     96 204 294 402 498 594 702 798 906 

E      108 198 306 402 498 606 702 810 

F       90 198 294 390 498 594 702 

F#        108 204 300 408 504 612 

G         96 192 300 396 504 

G#          96 204 300 408 

A           108 204 312 

Bb            96 204 

B             108 

 

Each diagonal represents one interval. 
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Figure 3: Error Matrix (four intervals only) for W3 

 C C# D Eb E F F# G Ab A Bb B C 

C  – 12 – 6 0 – 6 – – – – 1200 

C#   – 0 – 24 0 – 0 – – – – 

D    – 6 – 12 6 – 6 – – – 

Eb     – 0 – 18 0 – 0 – – 

E      – 6 – 18 0 – 0 – 

F       – 6 – 6 0 – 0 

F#        – 0 – 24 6 – 

G         – 12 – 12 6 

G#          – 0 – 24 

A           – 0 – 

Bb            – 0 

B             – 

 
Only M2nds, M3rds, P4ths, and P5ths are shown. Column entries are the absolute error (in cents) for each 
occurrence of those intervals (where the ideal intervals, respectively, are 9/8, 5/4, 4/3, and 3/2). 
 
Figure 4: W3 derived from a few just intervals 

 C C# D Eb E F F# G Ab A Bb  B 

Ideal Interval (in cents) - 100 204 300 386 498 600 702 800 900 1000 1100 

Interval Weight - 1 1 1 101 201 1 1201 1 31 1 1 

Key Weight 1 61 11 1 1 801 1 1 1 101 11 1 

 
As an example of using our framework to derive a historically well-known scale, we used a search-space 
algorithm to generate W3 using a small subset of just intervals (9/8, 5/4, 4/3, 3/2), filling in the gaps with 
12-ET intervals. The search algorithm, in conjunction with our optimization technique, found the interval 
and key weight sets above. These, along with the specified ideal interval set, “describe” W3. Note that the 
key and interval weights correspond closely to W3’s actual structure. For example, the highest weighted 
intervals found are for the M3, P4, and P5. In addition, according to at least one measure, that of triadic 
intonations (see Rasch, cited in our proposal), F major is the “best” key in W3. (Note also that this is just one 
of many such weighting sets that will achieve the same result for a specific set of ideal intervals). 

 


