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1. Introduction 

In this paper we propose a mathematical framework for the optimization of tuning 

systems.  We begin with an informal definition of “tuning system.” We then propose five 

general constraints that seem common to their evolution. The central idea is a formulation 

of those constraints as a set of numerical preferences and weights. From these parameter 

values we use appropriate optimization methods to produce an optimal tuning for a 

specific set of values. Finally, we consider some historical tunings from this perspective, 

and use the framework to generate a few examples of novel tuning systems. 

 

2. Tuning systems 

A tuning system is a set of intonations for intervals or pitch classes. A tuning system 

might be used by a musical culture, group of musicians, or even a single composer. Such 

a system may also serve as an abstraction, or model, for the derivation of any number of 

related systems and sub-systems.  

 

Smaller, functional subsets of pitches, such as scales, are extracted from a larger tuning 

system for specific musical purposes. Examples include the formation of major and 

minor (and other) scales from 12-tone equal temperament (12-ET), or the various 

Javanese pathet (manyura, nem, sanga, etc.) which are subsets of slendro and pélog 

tuning [Perlman pp. 40-43]. 

 

Tuning systems are neither static nor rigid. Although most musical cultures need some 

agreed-upon standard for musicians to tune their instruments and sing to, tuning systems 

evolve and fluctuate over time and in space (i.e., historically and geographically) and 
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vary stylistically within musical practice. Most musical cultures have some standard or 

canonical tuning, articulated in either oral or in written traditions. Such a system may 

often be canonized in a specific instrument, like the piano, or the gendér in Central 

Javanese music which may hold the tuning for an entire gamelan.  

 

We are interested here in a formal framework for tuning systems themselves, not the 

intricate (but no less important) musical variations and manifestations of such a system. 

Musicians deviate freely and artistically from standardized tunings in fluid, complex 

ways. For example, the many musical genres that share the nomenclature and intervallic 

template of 12-ET (like jazz and blues) are intonationally diverse. But the complexities 

and nuances of intonational usage associated with established tuning systems is beyond 

the scope of this paper.  

 

Culturally- and historically-specific constraints may influence the formation of tuning 

systems. A new system that resembles a pre-existing one is often desirable, as in Central 

Javanese gamelan tunings which reference well-known gamelan.5 A tuning system might 

adapt over time in the performance of an evolving body of music. This latter 

consideration is an important factor in the historical evolution of tunings in European 

music over the past millennium, including just intonations [JIs], mean-tones, well-

temperaments [WTs], equal temperaments [ETs], and 20th century experimental tuning 

systems.  

 

From a formal, abstract perspective tuning systems can be seen as specific attempts to 

solve certain problems, and understood as the resolution of a particular set of intonational 

constraints. The genesis of these problems — whether they emanate from issues of 

culture, economy, convenience, aesthetics, or some complex combination of all of 

these— is another issue. Our focus is on a relatively small set of important issues 

common to the creation of tuning systems, whose natural quantitative formulation 

enables the use of optimization techniques for analysis. We believe this approach has 

important implications towards a deeper understanding of tuning and even musical style. 
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3. Five Constraints 

Tuning systems through history and across cultures have used a set of complex 

compromises to account for some or all of the following constraints: 

 

1. Pitch set: use of a fixed number of pitches (and consequently, a fixed number of 

intervals); 

2. Repeat factor: use of a modulus, or repeat factor6 for scales, and for the tuning 

system itself (i.e., something like an octave); 

3. Intervals: an idea or set of ideas of correct or ideal intervals, in terms of frequency 

relationships; 

4. Hierarchy: a hierarchy of importance for the accuracy of intervals in the system; 

5. Key: a higher-level hierarchy of the relative importance of the “in-tuneness” of 

specific scales or modes begun at various pitches in the system. 

 

Most tuning systems attempt to resolve some or all of the five constraints listed above. 

The best fit may also reflect and incorporate other theoretical, cultural, historical, and 

even aesthetic factors. These five constraints, which appear to operate at a different, less 

culturally specific level, can be stated formally and mathematically. In this formulation, 

there is an associated weighting system that allows the generation of any tuning system 

with a fixed number of pitches, repeat-factor, and some set of ideal intervals. Not all 

tuning systems, of course, consider all of these constraints in their construction. Neither 

are they exhaustive.7 However, these constraints constitute an economical and musically 

reasonable set capable of providing an interesting analysis of any tuning system. 

 

4. Comments on the five constraints 

Some concept of a number of pitches seems to be nearly universal, primarily, perhaps, for 

practical reasons. In actual performance practice the situation is usually more complex. 

Style-specific ideas of “between-ness” and intonational variation are sometimes well-

articulated in theory and pedagogy, yet it is difficult to completely account for intra- and 

inter-cultural variation. For that reason, most theoretical tuning literature has focused on 
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canonical tuning systems. We adopt a similar approach here, assuming a fixed number of 

“discrete” [Burns and Ward p. 243] pitches for a tuning system. 

 

While musics vary widely in the numbers of named pitches in use, having a fixed number 

of pitches offers practical and cognitive advantages. The most obvious benefit is 

economical, as it affects the construction of instruments. There are pedagogical and 

musical advantages to a finite, even moderately sized set of pitches from which to learn 

to compose, improvise, sing, and perform common repertoires [Dowling and Harwood p. 

92; Burns and Ward p. 244]. Some authors [i.e., Lerdahl] have proposed cognitive 

explanations for certain numbers of pitches in a system. Whatever the specific optimal 

numbers may be, cultures seem to eventually agree on a specific number of pitches for a 

tuning system.8 

 
Repetition of an interval set at some fixed interval, or modulus, is common, if not 

universal, and is related to having a fixed set of pitches. Both music theory and cognition 

often distinguish between pitch height and pitch chroma [Shepard 1964; 1982], the latter 

usually referring to pitches whose frequencies are related as powers of two, or octaves. 

Although the modulus interval is usually the octave (or something close to it), this is not 

always the case, as in the well-known Pierce-Boehlen scale [Matthews and Pierce; see 

also, Moreno], or the stretched octaves of Central Javanese tuning [Surjodiningrat et al.; 

Sethares; Polansky 1984]. The  universality of the octave is not as much in dispute. 

However, the extent to which its prevalence is best accounted for by hard-wired or 

learned cognitive mechanisms is uncertain [e.g., Burns and Ward 262-264]. Regardless, 

most tuning systems seem to repeat, or “cycle,” [Dowling and Harwood 19] at some 

fixed interval. This interval, in practice, can be somewhat flexible, incorporating spectral 

considerations (such as the stretched octaves of piano tuning), musical factors, or some 

combination of the two. Given the utility of a fixed set of pitches, a reasonably constant 

repeat-factor is a likely corollary.9 In our framework we do not assume a specific interval 

of repetition — only that the system repeats at a reasonably constant interval.10  
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Tuning systems that place a greater importance on some intervals than others are called 

hierarchical [Krumhansl, 1987a, 1990, in particular, Chapter 10]. The mathematical 

simplicity of an interval is often correlated with its importance (such as a “pure” 5th, 

octave, or 3rd). There are cognitive and acoustical arguments for the importance of these 

intervals —they are easily heard, measured, and produced, and are likely candidates to 

function as generators for larger sets of intervals. As a consequence, the mistuning of 

these important intervals may be of greater concern. Even in 12-ET, this hierarchy exists: 

the octave (2/1) is exact, the 5th is extremely close (2¢ difference to 3/2), and the 3rd (14¢ 

difference to 5/4) is furthest from a simple, rational interval.  

 

Subsets of tuning systems (scales, modes, pathet, or rags [Jairazbhoy], etc.) may 

similarly demonstrate such a hierarchy. Many, if not most, bluegrass songs, for example, 

seem to be in open keys on the guitar, mandolin, and fiddle (G, D, A, E), and it is 

common for bluegrass guitarists to tune to an “open G chord,” privileging its tuning 

slightly over 12-ET. In other words, it is more important that the key of G be “in tune” 

than the key of C#. Historically, European art music has implemented these kinds of 

relationships in mean-tone tunings and well-temperaments. Key hierarchies also occur in 

the pathet (roughly: scales) of Central Javanese gamelan. The tuning system called 

slendro has three pathet (manyura, nem, sanga), which have complex usage relationships 

implying intonational constraints for particular melodic patterns and intervals. [Perlman 

pp. 44-45; Sumarsam pp. 142-143] 

 

It is important to state a priori that the mathematical formulation outlined here does not 

assume that tuning systems are based on small, rational intervals. Indeed, many tuning 

systems (such as slendro and 12-ET) deviate significantly from those kinds of intervals. 

Nor do we mean to engage longstanding discussions of  “categorical perception” [Burns 

and Ward pp. 250–254; Sethares p. 50] or “consonance” [Tenney 1988]. The purpose of 

this framework is to consider tuning systems through the analysis of stylistically non-

specific variables such as number of pitches, repeat factor, ideal intervals, interval and 

key weights.  
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5. Historical Example: Well-temperament 

Examination of a few well-known constructs from historical European tuning theory can  

illustrate some of the motivations for the mathematical framework described below. 

Several concepts central to our framework are introduced here: the interval matrix, ideal 

intervals, the associated error matrix, and the error function. 

 

The example below shows a standard Just Diatonic scale: 

 

1/1 9/8 5/4 4/3 3/2 5/3 15/8 2/1  (ratios) 

C D E F G A B C (note names) 

0¢ 204¢ 386¢ 498¢ 702¢ 884¢ 1088¢ 1200¢ (cents values of intervals) 
 

By definition, JIs are “in tune” in one key (possibly a few) and problematic in others. 

Certain intervals that represent differences between a fixed number of scale degrees will 

differ from some ideal interval which appears elsewhere in the scale. In the Just Diatonic 

scale, the most important such interval (aside from the 2/1 octave) is the 3/2 P5th. The 

musical 5th between the 2nd and 6th degrees of the scale above (40/27, the well known 

“wolf-fifth”) differs from that between the 1st and 5th or the 3rd and 7th scale degrees.11 

Central to this phenomenon is that intervals in this scale are built on more than one 

prime: in this case, the primes 2, 3 and 5. A tuning system such as JI can’t have pure 

intervals involving different primes and still be in tune with itself. The wolf-fifth is only 

one example, if perhaps the most famous.12 An even simpler version of this phenomenon 

can be seen in the well-known Pythagorean comma,13 which involves only the primes 2 

and 3.  

 

This fundamental problem, which be called the collision of primes, has no simple 

resolution, and has motivated the development of many tuning systems. It is also, in part, 

a consequence of the constraints of a repeating tuning with a fixed number of notes. WTs, 

and ultimately, equal-temperaments (ETs), approximate ideal intervals in more complex 

ways, moving towards the equality of derived scales beginning on different notes. 
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We might refer to this as the historical tuning problem,14 a musical/mathematical 

ramification of the insolvability of the Diophantine equation pn ≠ qm for distinct primes p 

and q.15 The problem for music theory is quite general, and might more appropriately be 

referred to not by its species name (“wolf”), but by its family name: the “canidae 

interval,” a more general description of any interval that is the result of a collision of 

primes and therefore necessitates some sort of compromise in the tuning system itself16.  

 

But this “collision” will occur in any system with irregular intervals — not just rational 

intervals. Thus, any system (except for ET) that has some set of ideal intervals, fixed set 

of pitches, and repeat factor needs to develop systematic compromises in order to resolve 

this problem. 

 

The interval matrix is a useful way to encode a tuning system. The i,j (row, column) 

entry in this matrix is the interval between notes i and j. Figure 1 is an example of the ½-

matrix17 of the JI diatonic scale18 clearly showing the wolf 5th: 

 
 C 

(1/1) 
D 

(9/8) 
E 

(5/4) 
F 

(4/3) 
G 

(3/2) 
A 

(5/3) 
B 

(15/8) 
C 

(2/1) 
C  9/8 5/4 4/3 3/2 5/3 15/8 2/1 
D   10/9 32/27 4/3 40/27 5/3 16/9 

E    16/15 6/5 4/3 3/2 8/5 
F     9/8 5/4 45/32 3/2 
G      10/9 5/4 4/3 

A       9/8 6/5 

B        16/15 

 
Figure 1: ½ Interval Matrix of Just Diatonic Scale. Intervals are in ratios within 
one octave. 5ths are in bold. The wolf (40/27) is the only non-ideal P5th. Note that all 
M3rds (C-E, F-A, G-B) are ideal intervals of 5/4. 

 

An ideal tuning would be one in which the i,j entry only depends on |i-j| — each entry is 

equal to an ideal interval. In the ideal interval matrix, values on the diagonals are 

constant and equal to the ideal ratio. The ideal interval matrix is equivalent to the interval 

matrix only in ET. Any unequal interval propagates itself through the matrix, causing 

irregularity. 

 



5/7/08 

 8 

The error matrix of a tuning system contains the differences between the entries of the 

interval matrix and the respective entries in the ideal interval matrix. Figures 2 and 3 

show the interval matrix and a portion of the error matrix for one of the most studied 

WTs in history: the so-called “Werckmeister III (W3)” tuning, devised by Andreas 

Werckmeister, an influential 17th -century music theorist and keyboard tuner.19  

 
 C C# D Eb E F F# G Ab A Bb B C 

C  90 192 294 390 498 588 696 792 888 996 1092 1200 

C#   102 204 300 408 498 606 702 798 906 1002 1110 

D    102 198 306 396 504 600 696 804 900 1008 

Eb     96 204 294 402 498 594 702 798 906 

E      108 198 306 402 498 606 702 810 

F       90 198 294 390 498 594 702 

F#        108 204 300 408 504 612 

G         96 192 300 396 504 

G#          96 204 300 408 

A           108 204 312 

Bb            96 204 

B             108 

 
Figure 2: W3 ½-matrix. Each diagonal is a specific interval. “Keys” correspond to 
rows. All keys in W3 are considered reasonably good. Values are in cents. 
 

 
 C C# D Eb E F F# G Ab A Bb B C 

C  – – – 4 0 – 6 – – – – – 
C#   – – – 22 0 – 0 – – – – 
D    – – – 10 6 – 6 – – – 
Eb     – – – 16 0 – 0 – – 
E      – – – 16 0 – 0 – 
F       – – – 4 0 – 0 
F#        – – – 22 6 – 
G         – – – 10 6 
G#          – – – 22 
A           – – – 
Bb            – – 
B             – 
              

 
Figure 3: W3 error ½-matrix. Three (diagonal) intervals (M3rd, P4th, P5th) are shown. 
Note that the “central keys” (C, F) have smaller errors for the 3rd and 5th (another central 
key, G, is the inversion of F, and is not shown in the ½-matrix). The supertonic key (D) is 
also relatively good, since it is a likely next key in tonal music after the tonic and 
dominant.  
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ideal interval matrix is not shown, but ideal values for the P5th, M3rd, and P4th, are 702, 

486, and 698 respectively (note that these do not occur in the key of C in W3).20 

 

A comparison of these ½-matrices shows that in a WT system like W3 the degree of error 

varies considerably over intervals and keys (shown here as diagonals and rows). Smaller 

errors in W3 tend to be found in central keys (beginning on the first, 5th, and 7th degrees) 

and in important intervals like the M3rd and P5th. 

 

All WTs (and W3 in particular) illustrate the technique we describe below. They are also 

an excellent, clearly articulated set of examples that tuning systems seem to evolve as 

attempts to reconcile ideas of key, ideal interval, a fixed number of pitches, and 

something like the octave into an optimal tuning system. Well-documented by the 18th 

century theorists who developed them, WTs have been discussed and analyzed a great 

deal ever since [Jorgensen, Lindley, Barbour, Donahue].  

 

6. Mathematical Formulation 

A rigorous notion of an optimal tuning system may be formulated by providing a formal, 

mathematical framework for some seemingly universal and important aspects of tuning. 

We begin by formalizing the five constraints on tuning systems described above. Next, 

we define an abstract representation of the interval matrix and the associated error matrix 

as well as an error function that uses the error matrix as input. We then minimize this 

error function using least squares to find the optimal tuning. 

 

The five constraints on tuning systems are formalized as follows:  

 

1. Pitch set: let a1 to an be a set of n pitches, none equal to 0. 

2. Repeat factor: let ω > an be the repeat factor of the tuning system. 

3. Intervals: let I1 to In represent the ideal intervals. 

4. Hierarchy: let i1 to in be interval weights to represent the desired 

accuracy of the n intervals in the tuning system. 
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5. Key: let k0 to kn be key weights to represent the fixed pitches in the 

tuning system to which intervals are measured. 

 

Using this notation, the interval matrix M for a set of n pitches, a1 to an, is written as: 

  

! 

M =

0 a
1

K a
n"1 a

n

# " a
1

0 K a
n"1 " a1 a

n
" a

1

M M O M M

# " a
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n"1 K 0 a
n
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% 
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& 
& 
& 
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( 

) 
) 
) 
) 
) ) 

. 

The matrix M has n+1 rows and n+1 columns with zeros along the diagonal. The entry in 

row i and column j is aj – ai if i ≤ j, or ω+aj – ai if i > j. The matrix M specifies all 

possible intervals of the tuning system. All instances of a particular interval are found on 

the diagonals of the matrix.  

 

The ideal interval matrix L represents the desired interval for each entry in the matrix M: 

  

! 

L =

0 I
1

K I
n"1 I

n

I
n

0 K I
n"2 I

n"1

M M O M M

I
2

I
3

K 0 I
1

I
1

I
2

K I
n

0

# 

$ 

% 
% 
% 
% 
% % 

& 

' 

( 
( 
( 
( 
( ( 

. 

Note that L is circulant and is generated by rotating each row to the right relative to the 

previous row.  

 

The error matrix is the difference between the interval matrix M and the ideal interval 

matrix L. The total error of a tuning system is defined as a function of the error matrix. 

Natural choices for this function include the sum of the absolute values of the entries, 

known as the L1 error, or the square root of the sum of the squares of the entries, known 

as the L2 error.21 We use the L2 error, to simplify differentiation for a least-squares 

solution. We have also developed, however, a genetic-algorithm solution that allows 

other error functions to be used.22 
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In the absence of any key or interval hierarchy (i.e., the interval weights and key weights 

are all equal) the error function is: 

  

! 

E(
r 
a ) = M " L( )#

2

, 

where the vector   

! 

r 
a  contains the n pitches, a1 to an, and the exponentiation and summation 

are applied element-wise to the matrix. In Appendix A, we prove that ET is always the 

optimal solution for this case, independent of the ideal intervals specified in the matrix L. 

This result is in accord with historical evolution of tuning systems: if no key or interval is 

preferred over any other key or interval, ET is the best solution, since by definition it has 

no intonational differences between keys. If, however, some keys or intervals are more 

important than others, as in WTs, then ET may not be the best solution in the least-

squares sense.  

 

To formalize the notion of the relative importance of intervals and keys, we use interval 

and key weights. These weights can be applied to the error function through a weight 

matrix W: 

! 

W = I "K  
where the ‘

! 

"’ operator denotes a Hadamard, or element-wise product, and the interval-

weight matrix I and key-weight matrix K are defined as: 

  

! 
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    and    
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The weighted version of the error function is therefore 

  

! 

ˆ E (
r 
a ) = W " M # L( )

2

$  

in matrix notation and  

  

! 

ˆ E (
r 
a ) = ki

i= 0

n

" in + j# i+1
($ + a j # ai # In + j# i+1

)
2
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i#1

" + i j# i(a j # ai # I j# i)
2
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"
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& 
' 
' 

( 
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in double-summation notation.   
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For each set of constraints specified in the matrices I, K and L, there is a unique solution 

that minimizes the weighted error function. This solution is called the optimal tuning 

system, and it is a set of pitches a1 to an. While the optimal tuning is unique to a given set 

of constraints, the converse is not true: there is not necessarily a unique set of constraints 

that will generate a given tuning. In other words, multiple sets of constraints can generate 

the same tuning, within a specified tolerance.23  

 

For example, we can approximate W3 within an average error of 0.5 cents using one 

(Pythagorean) ideal interval and the following interval and key weights: 

 
Ideal intervals   90 204 294 408 498 612 702 792 906 996 1110 

Int. weights  - - - - - - 1 - - - - 

Key weights - 0.3 - 0.15 0.05 0.05 0.1 - 0.2 0.05 0.1 - 

 

Though many sets of constraints could generate W3, these particular constraints illustrate 

an interesting alternative view of the tuning: W3 can be generated by specifying good P5s 

in the outer keys.24 This is, perhaps, surprising in light of common formulations of WTs 

in which “inner” keys are considered to be central to their design. In other words, the idea 

of tuning to central keys may be historically true but not mathematically necessary.25 

 

7. Comments 

Using this framework, we can design and produce tunings incorporating historical and 

cross-cultural criteria. With some high degree of accuracy, we can approximate criteria 

for the development of historical tuning systems. By replicating a system heuristically, 

we might be able to infer something about the criteria important to its design, such as the 

key and interval weights that would produce it from a given set of ideal intervals (or vice 

versa). This approach can also be used to invent new systems. 

 

In all cases, the tuning system is specified parametrically. This framework considers 

tuning systems as a formal description of their higher level “features” (the five 

constraints) rather than by their “note-by-note” intervals. A given set of features uniquely 

describes one tuning system. This can be an interesting and powerful approach to the 
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study of scales, tuning systems, and tuning in general, as well as a creative tool for new 

compositional ideas. 

 

8. Examples: Optimal Well Temperaments 

A convenient point of comparison for our model is W3, since it is an historical version of 

the method proposed here. “… [W3] was the first unequal temperament to allow 

satisfactory performance of all possible tonalities” [Ledbetter p. 38]. Using the 

information contained in the interval and error matrix, we can rigorously analyze and 

expand upon statements such as the above description of W3, as well as other tunings. In 

some sense, all tuning systems other than ETs are well-tempered: they must attempt to 

resolve some or all of these constraints.  From this perspective, our framework might be 

alternatively described as a way of creating optimal well-temperaments (OWTs). 

 

Example 1: OWT1 and OWT2 and minimal mean-tempering 

As a way of exploring the possibilities of our framework to formally generalize historical 

criteria for tuning systems, we created several new WTs. Rasch, Chalmers [1974], and 

others have proposed simple, reasonable measurements of tuning systems.26 Rasch, in his 

consideration of Werckmeister’s tunings, measures the mean-tempering of “all consonant 

intervals, which is equal to the mean tempering of all triads, or of all keys.” [Rasch pp. 

38–46]. This is the mean difference of the three intervals in the major chord tuned as 1/1, 

5/4, 3/2 (ideal intervals) and the actual intervals in the tuning over 12 keys. Rasch’s 

measure is thus an error function, distinct from but related to the one used in this paper,  

for a tuning system given a set of ideal intervals. Rasch uses this function to measure the 

degree to which Werckmeister’s tuning systems are in tune. This gives some idea of the 

in tune-ness of a temperament vis-a-vis the pure M3rd and P5th (and consequently, major 

triads). In addition, Rasch’s measure provides us with a meaningful way to measure the 

results of some simple experiments in generating new WTs. 

 

W3 is exemplary in its mean-tempering of 10.43¢, which is the same as 12-ET (and can 

be shown to be an absolute minima27). An historical WT often known as Young 2 
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(sometimes considered to be an improvement on W3 [Jorgensen; Donahue]), also 

achieves this minimality.  

 

Using our framework, we generated two new optimal tunings with the same minimal 

mean-tempering as W3, Young 2, and 12-ET. Using reasonable sets of ideal intervals, we 

found sets of weights28 for two new optimal tunings (OWT1, OWT2). These two new 

tunings are maximally in tune by a specific measure: mean-tempering of triads. They 

have a great deal in common (ideal intervals, key and interval weights), theoretically and 

musically, with historical WTs. Yet, their musical implications and structure differ in 

important ways from their historical models.  

 
W3 0 90.2 192.2 294.1 390.2 498.1 588.3 696.1 792.2 888.3 996.1 1092.2 

Young 2 0 90.2 196.1 294.1  392.2 498.0 588.3 698.0 792.2 894.1 996.1 1090.2 

OWT1 0 102.0 203.8 297.2 396.3 498.1 600.0 702.0 803.8 897.2 996.3 1098.1 

OWT2 0 93.1 203.1 296.3 397.4 498.5 591.7 701.6 794.8 903.4 997.4 1091.4 

 

Table 4: Four different minimally-tempered WTs  
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Figure 4: Tempering of triads in four minimally-tempered WTs.  

 

The tempering of major triads in W3, Young 2, and the two generated tunings OWT1 and 

OWT2, is shown in Figure 4. The tunings can be viewed as four different distributions of 

the minimal error, each with different characteristics. Both W3 and OWT2 have certain 

triads that are more in tune than any in Young 2 or OWT1. OWT2 contains two adjacent 

triads with equal minima, while W3 which has only one minimal triad. This means that 

where W3 has one best key, OWT2 has two. OWT1 has two non-contiguous minima 

areas. For both OWT1 and OWT2 having several minima means that some other triads 

will be less in tune. This is historically unusual, and suggests, perhaps, a more chromatic 

musical style. Young 2 never achieves the triadic minima of W3 or OWT2, but has a 

wide adjacent region of relatively in-tune triads. It is important to reiterate that OWT1, 

OWT2, W3 and Young 2 all have the same minimum total mean-tempering error.  
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Our framework can generate new tunings that belong to a kind of minimality class (along 

with W3 and Young 2) but, at the same time, explore different musical possibilities. 

Furthermore, with our optimality method, we can represent those tunings parametrically 

as sets discreet features (weights, ideal intervals, etc.), corresponding to the constraints 

that  shape the development of historical WTs. 

 

Example 2: Septimal OWTs 

New and experimental optimal tunings might even be created using our framework, for 

primarily speculative reasons. What if Werckmeister had listened to Bach in the morning 

and Lightnin’ Hopkins at night, and become fascinated with the flat m3rds and m7ths 

resulting from the use of the septimal intervals 7/6 and 7/4 respectively? These intervals, 

characteristic of blues and jazz, are prevalent in musical cultures around the world. Using 

our framework we can experiment, somewhat fancifully, with the creation of new tunings, 

adding septimal m3rds and m7ths to the ideal interval set while keeping M3rds and P5ths 

pure.29  

 

Septimal OWT1 
Ideal intervals   100 204 267 386 498 600 702 800 900 969 1100 

Int. weights  .0001 0.001  0.3 1 1 0.001  1 .001 0.001  1 0.001  

Key weights 1 0.001  0.001  0.3 0.001  1 0.001  1 0.001  0.001  0.001  0.001  

 
Septimal OWT2 
Ideal intervals   100 204 267 386 498 600 702 800 900 969 1100 

Int. weights  0.1 0.001  0.3 1 1 0.001  1 .001 0.001  1 0.001  

Key Weights 1 0.001  0.001  0.001 0.001  1 0.001  1 0.001  0.001  0.001  0.001  

 

The optimal tunings produced by these criteria are (in cents): 

 

Septimal OWT1: 0 42 206 272 386 491 543 704 764 877 977 1090 1200 

Septimal OWT2: 0 93 209 262 386 490 588 707 769 876 978 1093 1200 
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We recorded several Preludes and Fugues from the Well Tempered Clavier in these new 

septimal tunings, and in OWT1 and OWT2 (along with, for comparison, the conventional 

W3 and Young 2) [Polansky 2007]. 

  

Many of the intervals in these septimal OWTs are unusual, such as the ¼-tone m2nds, flat 

m7ths and m3rds, but the usual 5ths and 3rds are fairly well maintained. The resulting 

tunings, heard in the context of such a familiar musical work, might seem a little strange 

at first. Yet these tunings are, in some sense, a simple, transparent extension of the 

fundamental premises of WT. They give us some idea of how this framework generates 

new scales according to specific, demonstrable criteria (constraints). We like to think that 

both Bach and Werckmeister might have enjoyed these excursions into new tonalities, 

and perhaps even appreciated and understood their underlying ideas, enjoyed their 

harmonic excursions. 

 

Conclusion 

What are the implications of this framework for the consideration of the notion of a 

tuning system itself? Clearly, there are many issues involved in the development of a 

tuning system besides the specific criteria used here. A mathematical model such as ours 

does not account for cultural, aesthetic, historical, economic, or any number of intangible 

factors that might play a role in the development of a musical tradition.  

 

Nevertheless, it might be proposed that all tuning systems, except for those that use 

rational intervals exclusively, are in fact, tempered. If that is at least partly true, then the 

method described here offers more than a historical analysis of the work of Werckmeister 

and his colleagues. The framework becomes, by extension, a general theory of tuning 

systems. 
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6 The theorist Erv Wilson refers to this as the “interval of equivalence” [Burt p. 40]. 
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Erlich; Krumhansl [1987b]; Burns and Ward [p. 264]; Shepard [1987a]; Dowling and 
Harwood [pp. 90–100]. The last set of authors propose a set of “cognitive constraints on 
scale construction that seem to operate through much of the world” which differs from 
our framework in its focus on scale, rather than tuning system construction. As such, it 
takes into account factors — like Balzano coherence (or Rothenberg propriety), the 
number of intervals, and the idea of a small, modular interval — less pertinent to what 
Dowling and Harwood call “tonal materials” (our “tuning system” — their use of the 
term “tuning system” has a distinct meaning). However, our idea of key and interval 
weights is reflected in their “structural hierarchy” of a “modal scale.” 
Yasser and others (e.g. Kraehenbuehl and Schmidt) have postulated developmental 
mechanisms for tuning system development. There are, of course, many different and 
interesting examples of composers and theorists creating their own best tunings, all of 
which in a sense, attempt something like what we suggest here: optimization given (what 
are often artistic) constraints. Partch’s well-known monophonic scale is one such 
example, as are the approaches of Blackwood, Lindley and Turner-Smith, and the recent 
work of Gräf (following Barlow) in his method of scale rationalization [also, see Carlos]. 
8 Regardless, many contemporary composers and theorists, such as Partch, Johnston, 
Sims, Tenney [e.g. 1987] and Fokker have developed tuning systems for their own use, 
with varying numbers of pitches per octave [see Keislar for an excellent survey]. A 
number of contemporary composers working in experimental intonation have used tuning 
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systems with an indefinite, dynamic or adaptive number of pitches per octave (for 
example, see [Polansky 1987]), but this approach is less common when the tuning system 
serves as some kind of standard for a musical community. 
9 Burt surveys systems which repeat at values other than the octave, and describes some 
associated compositional experiments.  
10 In fact, with a very simple alteration, the mathematics described later in this paper can 
eschew the assumption of a repeat factor.  
11 Alternative just diatonic scales might use 10/9 for the M2nd (which occurs between the 
2nd and 3rd and 5th and 6th scale degrees), or 27/16 for the M6th. While these alterations 
shift the “wolf 5th” they have no effect on the central problem addressed here. 
12 Isacoff calls it “the search for la,” [p. 58] and constructs the following metaphor for the 
problem: “Attempting to force [pure thirds, perfect octaves, perfect fifths] them all into 
the same harpsichord or organ would be like trying to squeeze various pieces of fine 
furniture into a room too small to accommodate them; no matter where you place the 
exquisite couch, there is simply no room for the the elegant loveseat…. The keyboard 
thus became a battleground of warring proportions; and the desire to acheive a tuning 
based on all of the ideal, simple ratios an unrealizeable fantasy.” [p. 67] He writes that 
musical temperament is, in “application… similar to the Japanese art of bonsai.” [p. 95]. 
13 A comma is, in terms of our framework, a more general idea, and roughly means “the 
error of an actual interval to an ideal interval.” Kennan suggests an algorithm for 
“optimally distributing” commas to “minimize the maximum of the absolute values of the 
errors of all the intervals that we care about.” 
14 Personal communication, Polansky and James Tenney. Note that Barbour [1948 p. 
550] seems to mean something very similar when he refers to “the tuning problem.” Doty 
[pp. 36–38] more specifically refers to the “supertonic problem”: “The problems posed 
by the supertonic minor triad and the syntonic comma have provoked some rather 
extreme reactions from composers and theorists.” [Doty p. 38]. The ideas in this paper 
are one such “reaction” to the generalization of these problems. 
15 “Thus there will never be a scale in which all the fifths, or a complete set of fifths and 
thirds, are correct. The same type of analysis shows that any method of constructing a 
twelve-tone scale by rational numbers is doomed to inconsistency.” [Dunne and 
McConnell p. 109]. Several authors, including the latter, have employed the 
mathematical technique of continued fractions in this regard; see [Berger; Brun; Barbour 
1948; Rosser]. Dunne and McConnell [p. 114] even develop a 41-tone to the octave 
tuning using this approach. 
16 Jorgensen [p. 779] defines “wolf” quite generally, as “an interval that is considered too 
far out-of-tune to use in musical performance…its ratio is complicated.” 
17 For the complete matrix, and detailed analysis of the “supertonic problem,” see Doty 
[pp. 36-38]. 
18 There are any number of definitions, in music theory, cognition, and history for terms 
like scale, tuning, mode, tuning system, gamut. Different authors mean different things 
and use these words more or less interchangeably. A discussion of the usages of these 
terms is beyond the scope of this paper, but in this example we refer to the Just Diatonic 
as a scale because it is a subset of a larger set of intervals. Some of these, like the ½-step 
16/15, and the m3rd 6/5, do not explicitly appear in this representation. They would if the 
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scale were written as adjacent (rather than absolute) intervals: 1/1 9/8 10/9 16/15 
9/8 10/9 9/8 16/15. The intervals do appear in the ½-matrix, but share diagonals 
with other intervals of different categories: both the M2nd (9/8) and the m2nd (16/15) 
appear in the same diagonals. The interval matrix of the larger tuning system from which 
the Just Diatonic scale is derived, would more clearly distinguish intervals. 
19 Rasch says that “Few if any historical tunings have received more attention in the 
literature than ‘Werckmeister III’” [p. 29]. Donahue [p. 26] says of W3: “It may be the 
first documented temperament for keyboard instruments that did not have a wolf 
interval.” Similarly, our framework is intended to produce tunings without any “canidae 
intervals.”  
20 In these preliminary examples, it suffices to show the ½-matrix, although in our 
mathematical framework, for computational reasons, the error function is taken on the 
complete matrix. The interval matrix is symmetric around the repeat factor. Values below 
the diagonal are intervals that span the repeat factor until the next occurrence (in this 
case, two octaves of the tuning), so that each “key” is represented by the same number of 
intervals. 
21 The L1 and L2 measures are but two in a continuous range of Lp measures, defined by 
taking the pth root of the sum of the pth powers (for any postive real number p) of the 
absolute value of the differences. Both the L1 and L2 functions measure pitch distance, but 
other error functions, such as those which measure the harmonic distance of the intervals 
(like the Euler gradus suavitatis (GS) function, the Tenney harmonic distance function 
[Tenney, 1988; see Chalmers [1983] for a comparison of these two functions], or the 
Barlow harmonicity function [Barlow] are possible as well. These functions suggest 
interesting ways to extend the framework in this paper [see, for instance Gräf].  
A second possible extension to the framework would be to facilitate the choice of several 
weighted alternatives for certain ideal intervals, such as the aforementioned M2nd in the 
Just Diatonic scale. For example, the error function might use the minimum error to the 
10/9 or 9/8, rather than the actual error to one of them. 
22 In all cases tested, the genetic-algorithm solution with the L1 measure finds the same 
solution as the deterministic one with the L2 measure. However this non-deterministic 
approach offers the important possibility of easily substituting alternative error functions, 
and experimenting with other aspects of the framework. [See Software]. 
23 This is due in large part to the particular construction of our framework, which 
incorporates redundancy. Each cell in the matrix is weighted by the product of the key 
and interval weights, allowing for (we hope) a more general and musically common 
specification of tuning system features. However, it is a simple matter to alter the way 
these weights are specified. For example, a weight matrix might be used, specifying a 
specific value for each cell. In this way, a greater degree of weighting specificity could be 
achieved, although, in many cases, at the expense of creating a less useful model. 
24 Tuning systems are often generated from a small number of important intervals, like 
the 5th and 3rd. Some preliminary experiments with our framework have shown that a 
number of historical and world music scales can be generated from small sets of ideal 
intervals, weighting all others to zero.  
25 For example keys beginning on the 1st, 4th, and 5th notes (tonic, subdominant and 
dominant) are thought to be “central” or inner in tonal music, an assumption usually 
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reflected in the tuning systems themselves. Similar hierarchies exist in other musical 
cultures, such as in Central Javanese music. 
26 Chalmers suggests a least-squares fit for the minimization of specific interval error, an 
idea influential to this current framework. Sethares [1997 pp. 69–70], introducing his 
own tuning optimization algorithm [also Sethares 1993] based on the best-fit to particular 
spectra, surveys a number of tuning evaluation methods (aptly titled “My Tuning is 
Better Than Yours”).  
27 Given some fixed number of pitches and of ideal intervals, it can be proved that ET 
achieves the minimum mean-tempering value, but so do other tuning systems. [See 
Appendix]. 
28 Given a set of ideal intervals, our framework can generate infinitely many scales, 
including preexisting ones (like W3). For this reason it is worth clarifying the 
methodology of these examples.  
We specified a small subset of ideal intervals (OWT1 = [5/4 4/3 3/2 8/5]; OWT2 = [9/8 
7/6 5/4 4/3 3/2 8/5 12/7 16/9] and searched for an accompanying set of weights (key and 
interval) which generated an optimal scale with the specified minimal mean-tempering 
value. To perform this search, we used a standard hill-climbing algorithm (in the program 
Matlab).  
 
The weights found by the search algorithm were:  

OWT1 
interval = [1 1 1 50 1600 1 1 50 1 1 1] 
key = [50 60 7 1 7 60 50 60 7 1 7 60] 
 

OWT2 
interval = [1 1 1 10 2000 1 2000 10 1 1 1 ] 
key = [50 30 10 30 1 30 10 30 50 1 10 1] 
 

29 Several theorists and composers have discussed the importance and prevalence of 
septimal tunings. For example see [Erlich; Fokker; Harrison; Doty; Partch]. “So it seems 
natural to try and expand harmony by making 7-limit intervals as fundamental harmonic 
units. The new consonant intervals would be 7:4, 7:5 and 7:6.” [Erlich p. 2]. Doty [pp. 
47–54] discusses some historical and “ethnic” seven-limit tunings. “Thus, while it may 
not seem accurate to say that no dominant seventh chords or diminished triads exist in the 
five-limit, the seven-limit versions of these chords offer such superior consonance and 
clarity that they are to be preferred in almost every case…” [Doty p. 44]. Fokker’s widely 
used 31-ET tuning has, in fact a more accurate approximation of what Rasch [Fokker p. 
27] calls the “harmonic seventh” than the 3/2 P5th. Polansky [1984], citing Harrison [p. 
114] and Surjodiningrat et. al., discusses septimal intervals in slendro gamelan tunings. 


