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Preface

This paper explores some formal aspects of contour, especially the
mathematics of an abstract definition of contour itself. In the hope of
establishing a general formulation that will be of use to more specific,
style- and genre-related theoretical work in contour, a “non-stylistic”
approach is taken. Specific musical situations (like the equivalence
classes generated by elementary transformations, or musical assump-
tions made by ethnomusicological contour studies) are not invoked:

Further generalization of the theory of “the number of possible
contours™ includes the formulation of a theory of contour for asym-
metrical and non-ternary contour descriptions, one we believe to be of
musical interest.

We assume that contour may be applied to any parameter of music,
at any hierarchical level. These ideas may be used in the analysis of
waveforms, melody, the sequence of pitch means in some large-scale
segmentation of a piece, or any other quantifiable parameter.
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I. Introduction: Definitions and Uses of Contour

The idea of contour is of considerable importance in music theory,
composition, experimental psychology, ethnomusicology, and percep-
tion. Psychologists (Dowling, Edworthy, Cuddy, and others) have
found the perception of contour to be integral to melodic memory and
recognition. Various definitions of contour and direction are the basis
for descriptions and analyses of the musics of Central Java, Native
America, and other cultures (Kolinski, Becker, Adams, Hastanto,
Seeger, and others). Seeger succinctly points out the importance of
contour and emphasizes its generative role when he describes what he
calls “‘musical logic” as “‘more the tool of the producer of music than
of the student of the product.”

In recent theoretical literature on western music, Morris, Fried-
mann, Marvin, and Laprade have exploited more formal definitions of
contour in an atonal ‘“‘set-theoretic’ context, specifically in the anal-
ysis of the music of Schoenberg and Webern. Polansky (1990, 1988,
1987) has used formal definitions of contour and contour metrics as an
important determinant of compositional form, especially in the con-
text of computer-aided composition and performance.

Most authors have proposed their own definitions of contour, usu-
ally specific to the experiment or form of analysis. Many of these def-
initions are functionally equivalent, but necessarily use different
notations. This is to some extent the case with the relationship of this
paper to some of the work of Morris, Laprade and Marvin, and Fried-
mann. This natural diversity of description even prompted Friedmann
(1987) to write a kind of lexicon of contour notation and similarity
functions (“My Contour, Their Contour’’)—we hope that the present
article, with its various notations, will not necessitate even further ex-
cursions into the possessive pronoun.

In the literature of experimental psychology, contour has usually
been defined in a linear way, as sequential relationships between el-
ements of some ordered set. It is generally presumed that the listener
is paying particular attention to, for example, the “moment by mo-
ment” direction, or “‘pattern of ups and downs” of a melody (Dowl-
ing, 1978), and not to the network of contour relationships between
the various pitches.! In most cases, this simple definition of (melodic)
contour makes sense: listeners are often most sensitive to adjacency
relations, and they tend to forget non-adjacent contour relationships
quickly. In experimental psychology, the use of a linear definition of
contour substantially limits the possible complexity of stimuli and per-
mits significant research on contour’s role in melodic recognition,
memory, and general perception.

In the ethnomusicological (Adams, Kolinski, Seeger), and espe-
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cially in the theoretical literature (Morris, Friedmann,? Marvin and
Laprade), authors have tended to be more concerned with what Po-
lansky has called combinatorial contour (1987). It is important to state
that here we are not using the word combinatorial in reference to the
rich literature on atonal set theory, in which it has a different conno-
tation. This paper shares a concern with combinatorial contour with
some of the other works mentioned, but the methodology and nota-
tion here are motivated by a specific set of theoretical questions.

II. Combinatorial Contour

A simple definition of contour, in accord with the existing litera-
ture, assigns a value of +, —, or =, or 1, —1, or 0 to the interval
between two elements, depending on whether or not the first element
is greater to, less than, or equal to the second, in some measurable
parameter. This can be called a three-valued, or ternary symmetrical
contour description. It is ternary because the “grain’ of distinction,
—1, 0, 1, only permits three possible comparisons between two ele-
ments (the relation function can assume three distinct values). This
description is symmetrical because there are as many ways for some-
thing to be less than something else as there are for something to be
greater than something else.

A two-valued, or binary (symmetrical) contour, omitting equality,
is used by some authors, especially in experimental psychology. No
change along a certain parameter will often mean that two successive
elements, in a specified (usually perceptual) context, are the same.
For example, Friedmann’s CAS, which he proposes as a preliminary
“rather blunt, general description of a series of moves between tem.
porally adjacent pitches” (1985) is an example of a binary contour de-
scription. Binary contours have often been used in ethnomusicological
studies, where repeated notes are considered to be one element. Since
in the present article we are not assuming any specific musical context
(as, for example, Friedmann was with his Schoenberg analysis), or pa-
rameter (our contour descriptions are in no way limited to pitch mor-
phologies), we cannot necessarily eliminate equality from the set of
relations.? ‘ ,

Most authors have used symmetrical contour descriptions, for ob-
vious reasons. It is difficult to think of examples of asymmetrical bi-
nary contour descriptions—only indicating change or no change—but
one interesting instance is a form of what is known in digital signal
processing as delta modulation, where an incoming audio signal is en-
coded as a one-bit sequence of “‘change values.” An asymmetrical sit-
uation with, for example, four relations (a lot less than, a little less
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than, equal ro, and greater than) is less common than a symmetrical
one (and perhaps unnecessarily overlooked). We intend that the for-
mal descriptions presented here can be generalized to asymmetric and
non-ternary contours as well.

Linear and Combinatorial Contour

Polansky (1987) has described a simple contour function that as-
signs a value of —1, 1, or 0 to two elements depending on their rela-
tionship, calling it sgn(a,b).* The value 1 is assigned to the relation: ““a
is greater than b,” —1 to ““ais less than b,” and 0 to ““a is equal to b.”
This function, and others used here, are more precisely defined in the
mathematical proof given below. Similar “direction” functions, e.g.,
Marvin and Laprade’s COM(a,b), have been used by other authors.
Assuming that it is possible to determine these three relationships be-
tween any two elements, it is possible to use these simple functions to
describe an ordered sequence of values, or a morphology, by its con-
tour (Polansky, 1987, 1978; Tenney, 1961).° The length (L) of a mor-
phology is simply the number of elements in the set. For example, the
following set of durations (the first measure of ““The Stars and Stripes
Forever”)

o — T | A T
1 1 1 !

can be described in the following way as the contour relations between
adjacent elements, where the elements are labelled in order {a,b,
c,d,e}:

{1, 1, =1, =1} {sgn(a.b), sgn(b,c), sgn(c.d), sgn(d,e)}

For a morphology of length L there are of course L—1 adjacent re-
lationships.

This type of description is called linear, because it only considers
adjacent relationships. A combinatorial description uses relations be-
tween non-adjacent elements of the morphology, usually in addition
to the adjacent relations (Polansky, 1987). Generally, combinatorial
descriptions contain more information than linear ones and can be
used to ‘“‘take metrics” (measure similarity) between morphologies
with a greater degree of sensitivity (Polansky, 1987; Marvin and La-
prade).6 Similar notions of linearity and combinatoriality (though with
different terminology) are used by Morris, Friedmann (1987, 1985),
and Marvin and Laprade in their work on pitch contours.”

A combinatorial description of the above Sousa duration sequence
could be represented by the following matrix:
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10 {sgn(a,a), sgn(a,b), sgn(a,c), sgn(a,d), sgn(a,e)}

11
-1 01 1 —1 {sgn(b,a), sgn(b,b), sgn(b,c), sgn(b,d), sgn(b,e)}
-1 =10 —1 -1 {sgn(c,a), sgn(c,b), sgn(c,c), sgn(c,d), sgn(c,e)}
—1 =1I'1 0 -1 {sgn(d,a), sgn(d,b), sgn(d.c), sgn(d,d), sgn(d,e)}
0 11 1 0 {sgn(e,a), sgn(e,b), sgn(e.c), sgn(e,d), sgn(e,e)}

The rows and columns of this matrix can of course be arranged in a
number of equivalent ways: a likely alternative would construe the
first row as {sgn(a,b), sgn(b,c) .. .}, the second row as {sgn(a,c),
sgn(b,d) . . .}, etc. (see Marvin and Laprade’s INT, function for a
very specific implementation of this type of matrix construction).

Description of Contour as a Ternary Number

We use here a slightly different notation for ternary symmetric con-
tours: fernary numbers. Instead of using the conventional (—,=, + ),
or (—1,0,1) to describe contours, we will use base three (0,1,2), to de-
scribe (a<<b, a=b, a>b) respectively. The discussion that follows will
clarify this choice of notation. In using ternary (base 3) numbers to
describe contour, 0 means “‘is less than,” 1 means ““is equal to,” and
2 means “is greater than.” The placement of the 2 and 0 is arbitrary:
everything that follows would work if the symbols for “greater than”

“and “less than” were reversed. The matrix above, written in ternary
notation, is as follows:

-0 O O
N OO N
NN =N
N = O NN
0 OO =

Binomial Coefficient

For a set of ordered values, or morphology, of length L, there are
in general

Lm = (Lz" L)/z

values necessary to describe the contour. L., describes the “matrix
length” of a morphology L. This number, in simpler terms, defines the
“number of relations” between L objects. It is called the binomial co-
efficient (Knuth, p. 52) and describes how, in this instance, “L ele-
ments can be taken 2 at a time”.8

The binomial coefficient is an obvious result of two conditions that
make most of the matrix unnecessary:
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1) the diagonal is always one (things are equal to themselves)

2) “‘half the matrix minus the diagonal” is redundant in terms of con-
tour: if a<b, then b>a.

These conditions apply specifically to the above formulation of the
matrix, the specific ““positions” of values will change if the matrix is
ordered in some other way.

From the above, to describe a morphology of length L, there are
(L?=1L)/2 values needed. We call the length of the morphology L, and
the binomial coefficient, L,,. ForL=3, L =3;L=4,L_ =6; L=35,
L,=10;L=6,L, =15 L =7,L, = 21; and so on. In general, the
number of possible symmetric ternary contour descriptions is 3 raised to
the binomial coefficient power. This corresponds to all the possible
half-matrices (minus the diagonal) of ternary contours. For example,
where L=4 (L_,=6), there are

3Lm = 36 = 729

possible contour descriptions. For L=3, there are 3-™ or 33 possible
descriptions of contours, consisting of all the ternary numbers of 3 dig-
its (000, 001, 002, 010, etc.). That is, there are 27 ternary contour de-
scriptions.

A simple construction for L -digit ternary numbers from a matrix
is as follows. First list all the contour relations from the first element
of the morphology to all the others (first row of the matrix starting in
column two); then from the second element to all the others (first row
of the matrix starting in column two); then from the second element
to all others after it (a second row of the matrix, starting in the third
column), and so on.” A slightly more formal description of this process
is given in the proof below. This simply consists of “writing out the
half-matrix linearly, row by row,” starting with the first non-
redundant, non-equal cell in each row. The rhythmic sequence from
the Sousa example would be written, for example, as

2221220000

N\ /
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Inserted spaces indicate where each element of the morphology begins
to compare to the ones after it. The first value is greater than the sec-
ond, third, and fourth, and equal to the fifth; the second value is
greater than the third and the fourth, but less than the fifth; the third
value is less than the fourth and fifth; the fourth value is less than the
fifth.

A simpler example is the following three-element pitch morphol-

ogy.

(3]

The resulting three-digit ternary number is 002 (“C to F, C to Eb, F
to Eb”). For a slightly longer example, where L= 6 (L_=15)

%———‘: o

D]

we obtain the following fifteen-digit ternary number, a full description
of the combinatorial contour of the morphology:

22222 2101 000 01 2

which is a linear transcription of the matrix:
2 2 2 2 2

2 1 0 1
0 0 O
0 1
2

There is a simple way to read these ternary numbers examples: first
read the first L—1 digits, then the next L—2 digits, and so on, down to
the last digit, which is the contour relation between the last two ele-
ments in the morphology. ‘

Impossible Contours
For a given L, there are many more possible combinatorial con-

tour descriptors than there are actual contours. For example, the fol-
lowing ternary contour descriptor:
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211

—can not exist. As the diagram shows, it implies that the first element
descends to the second, and is equal to the third, but that the third is

equal to the second, which violates transitivity.
As another example of impossible contour, we can take the Sousa

example contour number

2221220000

and change the last digit to make it impossible:

222122000 1

The highlighted values show the values that cause an impossibility.
The first element is greater than the fourth, but equal to the fifth, but

the fourth equals the fifth: a=b, b=c, a>c.
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In general, it is not simple to discern possibility from combinatorial
contour descriptors with morphologies of greater than length
three —at least we don’t know of a simple algorithm yet! That is, it is
relatively straightforward to design a computer algorithm which will
list all possible contours, or test the possibility of a given ternary num-
ber, but these algorithms tend to be “brute force,” testing the number
in a manner similar to having to draw the contour by hand until a vi-
olation of transitivity is reached or not.!® Certain rules, however,
based on simple logic and easy to formulate, give quicker evaluations
of contour possibility, and eliminate certain numbers on the basis of
their numerical patterns. Where L =3, for example, there can never
be exactly two 1’s in the description, as shown above. This is an ob-
vious result of the fact that if two of the three possible relationships
show equality, so must the third. With ternary contours, another less
obvious, necessary, but not sufficient condition is that the sum of the
first and third digits must be greater than or equal to the second. The
formulation of these kinds of rules is specific to the way in which the
contours are described—the second would not hold, for example, if
{—1,0,1} were used instead of ternary numbers. The formulation of
rules of this type for L>3 remains an interesting problem.

What causes an impossible contour is a violation of transitivity, that
is, a situation like:

a>b, b>c¢, ¢>all

The general formulation of inclusion rules for possible contour re-
quires that a simple and elegant set of tests for transitivity be devised
for n-digit ternary numbers that describe these half-matrixes. It is easy
to design algorithms that list all the possible contours,!? but this is a
different task from being able to decide, from a given contour,
whether or not it is possible. '

ITI. The Number of Possible Contours

For morphologies of length three, assuming symmetry, the 13 pos-
sible ternary combinatorial contours (CC,) are'3

000 222
001 100 221
002 111 220
012 122 221
022 222
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The 14 impossible ternary combinatorial contours are

The 13 possible ternary contours (L =3):

000

=N

200

221

4

021
020
011
010

001

101
102
110
112
121
120

-

100

222

211
212
202
201

111

012

>

122

/



The 14 impossible ternary contours (L =3):

010 | 011 020 021

/< /Q

101 102 110 112
- — £

120 \121 201 202
_Q /Y

211 212

NN
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For L>3, the lists become too long, even for the possible contours.
The following chart shows the values for morphologies of length 6 and
less.

Length  #Descriptions!*  #Possible(CC,)  Ratio Possible!®

2 3 3 1

3 27 13 481
4 729 75 103
5 59,049 541 .009
6 14,348,907 4,683 .0003

The number of possible descriptions, since it is an exponential to the
third power, gets “big very fast,” as does the ratio of impossible to
possible contours. The number of possible contours gets big much
slower, and for musical purposes, is clearly the more significant num-
ber. For a morphology of a given length, it describes how many dis-
tinguishable “melodies” are possible—assuming that only contour
relations of a very restricted type, ternary and symmetrical, are used
for the distinction. However CC, itself also gets big very fast.!6
The number of possible three-valued contours (CC,) can be ex-

pressed by the formula

L

= h! S(L,h)

h=1
where S(L,h) is a Stirling number of the second kind.'” For example,
for L =3, the formula can be expanded as follows:

S(3,1) + 21S(3.2) + 3!S(3,3)
= 1 + (2%3)  + (6%1)
= 13

where the Stirling numbers of the second kind are S(3,1) =
S(3,2) = 3, and S(3,3) = 1.
For L =4 the equation is
S(4.1) + 2!S(4,2) + 3!S(4,3) + 41S(4,4)
= 1 + (2*7)  + (6%6) + (24 *1)
= 75

where the Stirling numbers of the second kind are S(4,1)
= 1,5(4,2) = 7,5(4,3) = 6, and S(4,4) = 1.

Stirling numbers of the second kind are familiar from combinato-
rics and can be roughly expressed as

the number of ways to place L objects into h boxes with no box empty.
This naturally includes the possibility that each of the h boxes contains
one or more of the L objects. This results from the fact that in a
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ternary contour, any or all of the values may be equal. A slightly dif-
ferent way of stating this problem is “how many ways can one parti-
tion a set of L elements into h non-empty, disjoint subsets” (Knuth,
page 73).

This equation might also be thought of more in terms of ranking.18
That is, each position in the contour has a rank of between {0, n—1},
but, importantly—and this invokes the use of the Stirling number for-
mula above —these rankings do not partition the morphology; more
than one position in the morphology may be of the same rank. In fact,
since all the objects may be equal (“‘you can use an object as many
times as you want”), the ranking might only employ one number (all
the objects would be **0”). With 5 objects, two of which are equal, the
highest ranking is 4. The question is then stated, in a slightly different
way, “how many different rankings are possible with n objects, as-
suming that the only criteria for ranking is less than, equal to, or
greater than.”

The number CC_ is always less than LE, and always greater than
LI CC, gives the precise number of possible contours for L objects,
where contour is defined in a strictly ternary, or three-valued way.

IV. Comments and Examples

Impossible contours form a kind of “negative space” for contours in
general. They are only impossible, it should be pointed out, in a two-
dimensional context because of the well-ordering aspect (see the proof
below). But impossible contours can often be viewed as the conflicting
superposition of two or more possible ones (this is easy to see from the
diagrams where L =3). If multi-dimensional parameters are used, or
a toric representation, it is easy to imagine how “impossible contour”
illusions might be generated, like a morphological Shepard tone.

Compositional Uses

The notion of “‘possible and impossible contour” arose in one of
the author’s (Polansky) compositions, in a surprising way. Computer
software that created melodies based on combinatorial contour alone
was used to stochastically create melodies whose combinatorial con-
tour similarity, or distance, was a certain predetermined value from
some source melody (by some contour metric). A simple algorithm
stochastically ““dropped” random contour matrices and tested them
(with any one of a number of combinatorial contour metrics) to see if
they were within selected ranges of similarity to the source. With mel-
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odies of any length, most of the matrices created would not actually
describe existing melodies, even though their metric values might
qualify them for inclusion.!®

Contour and Hierarchical Forms

The number of possible contours tells us, in a quite restricted sense,
how many ““forms” there are. For example, if one considers the sta-
tistical profile of tripartite musical forms in some parameter (say the
mean pitch, or temporal density), then there are surprisingly few
large-scale forms (only 13). That is, the general pitch height (or tem-
poral density, or loudness) means of the three sections of a piece can
only have 13 possible configurations (in terms of their contour). There
are fewer four-part forms than would have been expected—only 75!
The number of possible contours can provide a kind of formal lexicon
for large-scale analysis. We suspect that as larger and larger hierar-
chical groupings of musical events are made by listeners, contour will
become more important in perceiving large-scale formal variation. We
might be concerned that a given section of a piece was “more some-
thing” than another, or “more or less equal to,” without being too
particular as to how much. In this case, the specifics of the possibilities
of contour become even more interesting.

Data from Tenney and Polansky (1980) and Polansky (1978) show
parametric means of sections of works distinguished by the program
described in those two articles. The four works analyzed by Tenney
and Polansky were Debussy’s Syrinx, Varese’s Density 21.5, Webern’s
Concerto, op. 24 (2nd Movement), and the English horn solo from
Wagner’s Tristan and Isolde. The large-scale pitch contours of these
works are shown below.

Varese Webern Debussy Wagner
000 222022 220 022222222002222
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These contours show the mean pitches of the highest hierarchical level
of each piece (called sections).?° Using the notion of ternary contours,
we can simply describe each of these works as an n-digit number (ad-
mittedly within the very restricted domain of the computer algorithm
used). Even though the two “runs” (using different weightings) for
Syrinx produced different values, the contours are the same (220).
~These contours, while obviously involving a tremendous amount of in-
formation reduction, in some way describe the form of the piece, as
would contours in other parameters, and raise interesting possibilities
for formal comparisons and classifications.

Using data from Polansky’s hierarchical analysis of Ruggles’ Por-
tals,?! the contours of three different parametric means—pitch, inten-
sity, and temporal density—at the highest hierarchical level can be
compared, illustrating aspects of Ruggles’ large-scale design in the
structure of this work:

Pitch Intensity Temporal
density
102022 020022 002022

Contour and Scale Theory

A more unusual application of contour comes from scale theory,
particular of scales with a relatively small number of intervals and de-
grees, where interval width can be less important than the contour re-
lationships of the interval widths themselves. That is, contour
becomes important if one is not primarily interested in the exact
widths of the intervals, but in whether one is wider, narrower, or
(more or less) equal to another. This is the case, to some extent, for
Central Javanese slendro, which has 5 distinct pitches (ignoring, for
the moment, the stretched octaves), and 5 distinct adjacent intervals
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(I-11, II-111, I1I-V, V-VI, VI-T, summing usually to a 10-20-cent
stretched octave). Because of the tremendous variations in different
slendro tunings, foreign and Javanese scholars have often character-
ized different slendro tunings by calling their intervals large, equal, or
small (where equal is roughly the five-tone equal 240-cent interval).
This approach gives a surprisingly good depiction of the character of
a given slendro tuning and is often used by Javanese musicians them-
selves, since the variation of a given interval is often (but not always)
considered to be less important than a relationship between two in-
tervals of “bigger than,” “(more or less) equal to,” or “‘smaller than.”
On a very simple level, this means that one can imagine the number
of possible slendro as the number of possible combinatorial contours
of length 5, or 541. Even if that number is simply the number of types
of slendro (according to a very specific classification), with interval
magnitude variations on each of these, one gets some general notion
of the degree of diversity in the Central Javanese tuning tradition, and
perhaps a basis for further analysis.

V. Proof

The formula above for CC,, involving Stirling numbers of the sec-
ond kind, is well known in combinatorics. It remains to be proven that
the number of three-valued contours is in fact equal to the number of
ways that “L objects can be placed in h boxes, so that none of the
boxes is empty, and where any one of the L objects may be used sev-
eral times” —in other words, the number of orderings corresponding
to h different ranks.

The correspondence between the “number of possible contours” or
rankings and the familiar combinatorial statement is not at all obvi-
ous, and requires proof. From a mathematical perspective, it clearly
needs to be proved. From a musical standpoint, the authors’ experi-
ence is that it is a difficult connection to explain in ordinary language.

The structure of the proof is as follows. Every morphology [M] can
be written as a reduced morphology [R(M)]?? of a certain height
[#(M)], where that height is always less than or equal to the length (L)
of the morphology. The contour [C(M)] is then defined as the set of
(L?-L)/2 ternary relations between the values of a morphology. The
central theorem is then proved that the number of possible CM)’s is
the same as the number of possible R(M)’s, meaning that the number
of possible contours is established by the familiar equation invoiving
Stirling numbers of the second kind.

Definition: A set V is ordered if there is a transitive relation “<” on
V such that for every pair of distinct elements v, and v, in V, either
Vi<V, Or V,<v,.
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Comment: This allows a more formal definition for a morphology.
The set of integers, the set of durations, the set of steady-state timbres
considered by amplitude of the 5th partial, the set of pitches, the set
of positive integers, and the set of points in a line are all ordered. The
set of points in the plane is not ordered, nor is a 2-dimensional per-
ceptual representation of a timbre space with “brightness” and “at-
tack length” as the two axes.
 Definition: A morphology is a finite sequence of (not necessarily
distinct) elements chosen from an ordered set. If that set is denoted V,
we may represent a morphology of length L by (vy, v,, ..., v{ ), where
the v,eV are called the values (or elements) of the morphology.

Comment: The sequence of pitches (C, Ff, G, C), a finite se-
quence of positive integers, or a set of four durations are all morphol-
ogies. ;

Definition: Let M be a morphology whose values are chosen from
aset V. The reduction of M, denoted R(M), is a morphology with pos-
itive integer values constructed as follows. Let v be the smallest value
appearing in the morphology; replace very occurrence of v with 1. Let
v’ be the next smallest (if any) appearing in the morphology; replace
very occurrence of v’ with 2. Continue in this fashion until all values
in the morphology are exhausted. The height h(M) of the morphology
is the largest integer appearing in R(M); it follows that every integer
from 1 to h(M) appears in R(M).23

Comment: For example, for M = (C, E, G, C), we have
R(M) = (1,2,3,1), and h(M) = 3.

Example. Construction of R(M) with height h from a morphology
Ordered set = {C, C§, D, D4, ..., B} or {0, 1, 2, 3, ... 11}

Morphology M = {C, E, G, C} or {0, 4, 7, 0}
Reduced morphology R(M) = {1, 2, 3, 1}

— 3 = height = h(m)

1 2 31
length L=4
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Definition: The combinatorial contour C(M) of a morphology of
length L is a sequence of L(L—1)/2 values chosen from (0,1,2)** as
follows. The symbols {0,1,2} are used to indicate the relationship be-
tween ordered pairs of values v; and v; in a morphology: if i<j, so that
the value v; appears before v; in the morphology, then:

0 indicates v;<v;,
1 indicates v; = v;, and
2 indicates v;>v,25

The first L—1 values of C(M) represent the comparison of consec-
utive values of M with all those that follow it; the next L—2 represent
the comparison of the second value of M with all those that follow it;
the next L—3 represent the comparison of the third value of M with all
those that follow it, and so on. This is simply a formal description of
the construction of the ternary combinatorial contour number de-
scribed earlier.

Comment: For M = (C,E,G,C), we have C<E, and C<G, and
C = C, so the first three values of C(M) are 0, 0, 1. Since E<G and
E>C, the next two values of C(M) are 0, 2. Finally, since G>C, the
final value of C(M) is 2. Hence C(M) = (001022).

. Theorem: For morphologies M and M’, we have RM) = R(M") if
an only if C(M) = C(M'). ,

Proof: Since the reduction of a morphology preserves the length of
the morphology and all the order relations between the values of the
original morphology, if R(M) = R(M’), then C(M) = C(M’).

Now suppose C(M) = C(M'). First we prove that h(M) = h(M’).
If this were not the case, suppose M is the morphology with the larger
height, that is, h(M)>h(M’). Choose a sequence of h(M) values Vi,s
Vigs ++ o> Vi, frOm M which correspond to 1, 2, ..., h(M) in R(M); note
that these values do not necessarily appear in this order in M, that is,
although v, <v, < ... Vi the subscript k1 is not necessarily
smaller than k2, etc. Since the contour C(M) contains 0’s and 2’s cor-
responding to the comparisons between these values, the contour
C(M') must also. But then we can construct a sequence of h(M) dis-
tinct values in the morphology M’, contradicting h(M)>h(M").

Now let R(M) = (v{, v, ..., vp) and RIM') = (v',, V'5, ..., v',) and
suppose that R(M) = R(M'). Since their values must differ in some
place, say v, # v'y, choose M to be the morphology of the pair such
that v, <v’,. Further, let k0 be the (not necessarily unique) position of
the largest value in R(M’) that is greater than its corresponding value
in R(M); that is, v,o<V'y,, and v’y is the largest for which this ine-
quality is true. Since v/, ;<h(M') = h(M), there is a k1 such that Vki =
Vkos thus, vi;>vy,. Since C(M) = C(M') and v, ;>v,,, then V>V -
But v’y = vy, 50 V', >y, contradicting the maximality of v',o. QED
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The following diagram shows the general structure of the above
proof. The three steps show the greater than (above), equal to (on the
same line as) and less than (below) relationships of the elements in the
two morphologies M and M’, with C(M) = C(M').

Diagram of the proof

STEP 1 STEP 2 STEP 3
(Vio<V'xo) (Viko<V'ko = V1) (Vio<V'i0 = Vi1 <V'1)
M M M M M M
Vi = Via Vi @ Vi
Vi Vko Vi V'ko
Vo

(Since C(M') = C(M), the relationship between v’y and v', must be
the same as between v, and v, , which contradicts the maximality of
vy, among v’y which are greater than their corresponding vy.)

Corollary: The number of contours C(M) for morphologies of
length L is the same as the number of reduced morphologies of length
L.

The next theorem uses the formula given above for the calculation
of CCy.. In the formula below

Theorem: The number of reduced morphologies R(M) of length L
is

L
2 h! S(L,h)
h=1

Proof: We have h(M)=L. A reduced morphology of height h is de-
termined by giving each of the L positions in the sequence a value

from 1 to h, making sure that each value from 1 to h is taken at least
once.?°QFED

V1. Further Problems

The formal definition of possible and impossible contours raises
several theoretical and compositional questions.

Generalization to n-ary Contours
Important theoretical and mathematical questions remain, mostly

pertaining to ways of generalizing these concepts. First, how may the
formula above be extended to other than ternary contours, or n-ary
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contours? For example, if quintary values are allowed, as in: a lof less
than, less than, equal to, greater than, and a lot greater than, how many
possible contours are there??’ In this case, we would have to investi-
gate the possibility of the following number of contour descriptions:

50(L-L)/2]

With a generalized n-ary contour, the notion of “between-ness,” es-
sential to the mathematical discussion of contour, becomes more com-
plex if the situation is not limited to ternary contours. Because of this,
the investigation of transitivity and the resulting equations for the
number of possible n-ary contours is even more complex and, as far as
we are concerned, still an unsolved question (at least in the music the-
ory literature).

 Michael Friedmann posed the very interesting question: are all bi-
nary contours possible??® This question may be slightly restated so
that contours with adjacent equal elements are excluded from the dis-
cussion. In other words, ‘“‘are all binary contours without equality pos-
sible?”” The answer is no. The L=3 ternary contours 202 and 020
(inversions of each other) are counter examples: neither includes an
equality, but both violate transitivity. For L>3 there will be many
more impossible contours that do not include an equality.

Contour and Scale

The discussion of n-ary contours can be generalized further, so it is
no longer a question of contour, but perhaps of scale: the number of
possible relationships defines the scale, or gamut, in a given percep-
tual domain. This was mentioned earlier as the *‘grain” of distinction.
The base of the binomial coefficient exponent is the number of de-
grees of difference we are willing to consider, or the possible ways any
two elements in the morphology may be related. For example, the sec-
ond order binomial coefficient raised to the 12th power is the number
of possible “contours” of 12 values, or in other words, the number of
possible rankings of length twelve chosen from 12 pitches (with of
course, the possibility of equality). This seems to suggest a theoretical
continuum between the mathematics of contour and the mathematics
of other aspects of atonal set theory.?® A more general and elegant
statement of this generalization is an interesting and challenging prob-
lem for music theory.

Asymmetry

The issue becomes even more complicated and interesting if asym-
metrical contours are considered, as in less than, equal, greater than,
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a lot greater than. The mathematics of asymmetrical contours, with a
different set of logical possibilities, are, we suspect, different from the
mathematics of symmetrical ones. This situation also presents an area
for further research, in terms of both the mathematics of the situation
and the investigation of its musical applications.
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NOTES

—

. Even authors like Friedmann, Marvin and Laprade, and Polansky, who work
with “‘combinatorial”” definitions of contour, include linear contours as a ““less-
sensitive” first step.

2. Friedmann, in his work on contour in Schoenberg, distinguishes between what
I'have called “linear and combinatorial” contour by his two constructs CC and
CAS: “(CC) describes contour relations among all the pitches—not merely the
adjacent ones as the CAS does—and can reflect the occurrence of pitch repe-
titions.”

. On a philosophical level, we might say that the elements in our morphologies,
with their associated contour relationships, need to be distinguishable in some
dimension, but not necessarily the one for which we are forming the contour
description. This would naturally include the possibility of equal values.

- The sgn function is defined as sgn(a,b) = 1, ifa>b; 0, ifa=b; —1 if a<b. Note
that it is not a metric, because sgn(a,b) does not equal sgn(b,a).

- In the theoretical literature our term ‘“morphology” is usually rendered as “or-
dered set.”

6. Marvin and Laprade state (p. 231) that their COM-matrix, which is a combi-
natorial matrix functionally equivalent to our ternary number contour descrip-
tion, ““furnishes a much more complete picture since it is not limited simply to
relationships between adjacent contour pitches.” Polansky has found, however,
in both compositional and analytical applications, that although linear contour
metrics are “less sensitive” to the *“complete picture” of contour, they are
highly useful in modelling many perceptual situations and, in fact, give very
different results from combinatorial metrics. That is to say, they are not “better
or worse” than combinatorial measures, simply different.

7. These ideas become extremely important if one is interested in contour simi-
larity, or what Polansky has called contour metrics. Several authors (Marvin and
Laprade, with their CSIM(A,B), and Polansky, with his OCD, OLD, and other
classes of metrics) have developed precise combinatorial similarity functions,
although as usual the notation is very different. For example, Marvin and La-
prade’s CSIM(A,B) returns a value of “1” when two contours are equivalent,
where Polansky’s metrics (like the OCD), which in one of its particular forms is
equivalent to CSIM(A,B)) naturally return 0 (by the definition of a metric).

A further theoretical generalization of these metrics has been implemented
and published in software form, written in the computer music language
HMSL. It includes more general definitions of adjacency (for example, a con-
cept of adjacency that shifts during the measure), interval (including intervals
to elements not strictly in the set or morphology), and even degree of combi-
natoriality.

8. One needs to be cautious when exploring new applications of binomial cgcff-
cients, for according to Knuth, “there are so many relations present that when
someone finds a new identity, there aren’t many people who get excited about
it any more, except for the discoverer.” We hope the musical applications have
not been so completely exhausted!

9. This particular procedure is equivalent to Marvin and Laprade’s way of con-

structing the matrix from the INT, function.

W

=N

i
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10.

11.

12.

13.

14.

15.
16.

17.

18.

One very elegant one was suggested to us by David Lewin, and Polansky and
Phil Burk formulated another one in the design of the numerical proof of the
number of possible contours (see note 16 below). A graduate student at Dart-
mouth, Gerald Beauregard, has also devised an ingenious algorithm that uses
directed graphs.

A nice example of this was suggested to us by theorist Stephen Haflich and ex-
plained to us by Polansky’s six-year-old friend Nicolas Collins Weiler: in the
children’s game ‘“‘rock, paper, scissors,” scissors cuts paper, paper covers rock,
and rock crushes scissors.

In fact, one such algorithm was designed by Phil Burk in the construction of the
numerical proof of the number of possible contours up to L=6.

These thirteen possible ternary contours form a kind of superset of many of the
existing contour lists in the literature, like Seeger’s and Adams’. For example,
one of Adams’ typologies (p. 199) does not include three-element contours with
equal elements or contours that are completely ascending or descending (these
are subsumed logically under his two element contours), leaving only (in my
notation) {200, 210, 220, 002, 012, 022}, which he calls

{DIR,S;, D|RS;, D|R;S;, D|R;S;, D|R,S,, DiR,S;}

Other systems eliminate reflections, inversions, and so on. Since we are not in-
voking any direct reference to particular pre-existing musical styles or theories,
there is no reason to exclude any of these contours.

The number of descriptions is 3™ or:

S[(L2—-L)2]

#Descriptions/#Possible, rounded off to the last digit.

The table is a result of a numerical proof (by Polansky and Phil Burk, in
HMSL) of the number of possible three-valued contours for melodies of short
length, a proof equivalent to the non-numerical one given at the end of this
paper, but only for lengths 1-6. A home computer was not fast enough to easily
calculate possible contours for numbers greater than 6 in a reasonable amount
of time. Using Stirling numbers, the reader can easily work out this simple for-
mula for higher numbers.

Coincidentally, Marvin and Laprade, in their listing of C-Space Segment
Classes, stop at cardinality 6 as well. Even with the reduced numbers resulting
from their equivalence classes, the numbers get big quite fast.

Knuth, p. 66. The formula for computing a Stirling number of the second kind,
although it is more easily determined using a standard table, is:

h (_ 1)k—hkL

> KRR

For an excellent discussion of the combinatorial applications of Stirling num-
bers, along with some fundamental derivations and identities, see Grimaldi.
Our thanks to composer-theorist Robert Morris for directing us to that impor-
tant reference.

Functionally, exactly the same as Morris’ pitches “numbered in order from low
to high, beginning with 0 up to n—1.” This concept is also used by Marvin and
Laprade, and Friedmann.
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19. This occurred in the composing of a piece entitled 17 Simple Melodies of the

20.

21.

22.

23.

Same Length, a work which “listened” in real time to a number of melodies
improvised by a live performer and then sorted them according to their com-
binatorial contour, using a metric documented in Polansky, 1987. When this
stochastic method was used, in pieces like Distance Musics (first performed in
1986; Polansky, 1987a) and Bedhaya Sadra/Bedhaya Guthrie (Polansky, 1990),
generating morphologies with the required combinatorial contour proved too
difficult, owing to the overwhelmingly large number of possible matrix descrip-
tions as compared to the number of possible contours. Eventually, mutation
functions that generate a morphology of a given metric value to another were
designed in HMSL and used in several works.

There are computer algorithms for deciding on the “impossibility” of com-
binatorial contour descriptions; these algorithms were used (by Polansky and
Phil Burk) to generate a numerical proof (up to L=6) of the theorem proved
in this paper. These algorithms are too slow to work in a real-time performance
context and are an interesting problem for further investigation: “From a given
ternary contour description, how does one know if it is impossible or possible?”
It is possible that a new notation, other than the long ternary number repre-
sentation of a matrix, will be needed for this particular test.

The following table gives the actual pitch means of the highest level sections for
the above pieces (the two different runs for Syrinx are shown):
Syrinx Concerto  Density  Tristan

Section 1:  17.19/20.33  38.23 13.31 16.03

Section 2:  5.07/8.0 32.90 19.06 16.56

Section 3:  12.35/12.35  37.83 20.67 13.50

Section 4: 22.63 15.03

Section 5: 14.32

Section 6: 7.79

The parametric means for the four sections of Portals distinguished by the pro-
gram are:

Pitch Intensity Temporal Density

Section 1:  29.28 5.22 3.38
Section 2: 29.27 547 3.54
Section 3:  31.36 5.11 3.6
Section 4. 28.61 5.3 33

Note that the question of the grain of contour arises with even this simple ex-
ample: the pitch means of Sections 1 and 2 are considered to be “close enough”
here to be equal, a choice we made more or less arbitrarily in drawing these
contours. In all other cases, the values were significantly different, that is, by
some percentage of the range of values that might occur, thus permitting a con-
tour distinction.

Our R(M) is (more or less) functionally equivalent to Friedmann’s CC and
Marvin and Laprade’s Cseg.

This is of course similar to the way in which Morris constructs his normal con-
tour forms, or Friedmann his “CC”.
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24. Knuth suggests a more typographically sound notation than (—1,0,1) and less
numerically “loaded” than (0,1,2) that uses underlines: (1,0,1). (—1,0,1) and
(1,0,1) are examples of what Knuth calls a “‘balanced number system,” because
they are symmetrical with 0 in the middle. We use the ordinary (*‘unbalanced’)
ternary notation (0,1,2) in describing lists of contours because of the ease of
counting and devising simple computational aids in the ternary numbers.

25. This is simply the sgn function, or a formal statement of the usual way of no-
tating three-valued contour.

26. Knuth, p. 73.

27. It is quite easy to make the notion of n-ary contour consistent with, or at least
a natural extension of, the literature on contour. For example, Marvin and La-
prade (p. 228) state: ““The decision not to define the intervallic distance be-
tween c-pitches [their notation for the ranked values in an ordered set] reflects
a listener’s ability to determine that one c-pitch is higher than, lower than, or the
same as another [emphasis mine], but not to quantify how much higher or
lower.” If we simply insert “‘a lot higher than” and “‘a lot lower than’ into their
list, quintary contours would seem to fit just as well into their work with
c-segments and equivalence classes.

28. Personal communication.

29. Robert Morris, for example, points out a similar “‘impossibility” problem in the
Forte interval vector (personal communication).
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REVIEWS

Ear Training for Twentieth-Century Music
by Michael L. Friedmann

New Haven: Yale University Press, 1990
xxvi, 211 pp.

REVIEWER
Cynthia Folio

This book treats a subject that many in the field of music theory
have long awaited—ear training for twentieth-century music. It re-
flects a growing concern in the recent theoretical literature with per-
ception and the ability to hear musical structure. The book combines
numerous exercises and musical examples—all approached aurally—.
with one of the clearest explanations available of the concepts and
terms used in atonal analysis. Musical examples include excerpts from
standard contemporary repertoire and melodies carefully written by
the author, all exemplifying specific goals in hearing structures. The
exercises serve as an excellent springboard into the aural and visual
analysis of entire works, leaving it to the teacher or reader to apply
these detailed relationships to larger formal structures. !

But Ear Training is more than a pedagogical text and it encom-
passes more than ear training, successfully incorporating theoretical
material as well. Most impressive is the author’s presentation of much
more than the techniques of identifying isolated harmonies or melodic
fragments; his aim is hearing structure—an admirable goal and one he
convinces us is attainable through study and practice. Many of the ex-
ercises are based on his “conviction that the precise articulation of
structural relations provides the basic foundation for twentieth-
century music, and that perceiving them is a precondition for under-
standing affective content and gesture” (p. xxiii). His definition of a
“good ear” is “one that perceives and retains musical structures and
understands their role in a musical transformation or other composi-
tional process” (p. xxiii, italics in original).
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The book is organized so that it progresses from simple concepts to
the more difficult. The first chapter, “Calisthenics,” conditions the
reader for the following chapters. The next chapter introduces dyads
and emphasizes the various ways of hearing an interval, either in pitch
Space or pitch-class space. Chapter three, “Processes: Pitch, Pitch
Class, and Contour Relations,” immediately takes the reader beyond
intervals into hearing “processes” like retrograde, transposition, in-
version, invariance, and contour relationships. Chapters four, five,
and six describe the characteristics and structural properties of all the
trichords and tetrachords, and selected sets of more than four ele-
ments. Appendix I contains numerous musical examples from the
works of Debussy, Bartok, Stravinsky, and Schoenberg to be used as
a resource for dictation, sight singing, and identification of structures
and processes. Appendix II contains additional exercises and is fol-
lowed by a glossary and an index.

One important theme that runs through the various chapters is the
emphasis on hearing processes:

In grappling with twentieth-century music we cannot confine ourselves
to the definition of musical structures, such as interval types or set
classes. It is equally important to perceive a range of relations, or trans-
formations, that can connect different structures. Relations of this sort
can be conceptualized as operations or processes, three of which are
retrogression, transposition, and inversion. These processes treat mu-
sical elements as combinations either of pitches or pitch classes. (p. 23)

The act of hearing interval equivalencies in the chapter on “Dyads”
prepares the reader for the analysis of more complex relationships.
The author carefully distinguishes between pitch space and pitch-class
space, thereby illustrating different ways of hearing and analyzing in-
tervals. For example, students are asked to compare interval pairs on
the basis of (a) ordered pitch interval; (b) unordered pitch interval; (c)
ordered pitch interval mod 12; (d) unordered pitch interval mod 12; or
(e) unordered pitch class interval (p- 19).

After defining and hearing equivalencies, we progress to definitions
of key processes, complete with exercises for hearing various trans-
formations. The first transformations introduced are transposition and
inversion, along with invariance, symmetry and index number. Pitch
space and pitch-class space are always treated separately. For exam-
ple, Tr,,_,, signifies pitch transposition by n half-steps, upward (+)or
downward (—); whereas T, is pitch class transposition by n where n is
greater than or equal to 1 and less than or equal to 11 (pp. 24-25).

Included in the author’s list of processes is an imaginative approach
to hearing contour and contour identities.? Again, it reflects the au-
thor’s emphasis on hearing relationships:
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