{Hierarchical Music Specification Language)
A Real-Time Environment For Formal, Perceptual And Compositional
Experimentation

Larry Polansky

and David Rosenboom

Center for Contemporary Music
Music Department
Milis College
QOakland, California
USA 94613

ABSTRACT

HMSL is a real-time, non-stylistically based music
composition and experimentation language for the
creation and execution of hierarchical
morphologies. Integral to the definition of the
language are certain fundamental concepts drawn
from perception and cognition theory, and from the
authors' previous work in musical artificial
inteliigence. Among these are: the notion of
"distance” between shapes, or morphological
metries; “tendential and nodal" apsects of
movement between successive morphologies and
within morphologies themselves; the hierarchical

nature of morphological perceptual and
compasitional processes; a Wirtual Device
Interface", which assumes a generalized data

structure and links the compositional intelligence to
sound procducing hardware of various types; strict
definition of data structure types, including those
that are more appropriately called productions
which themselves produce morphologies when
executed.

HMSL consists primarily of three modes, CREATE,
PERFORM, and EXECUTE, CREATE is a graphics
based, primarily mouse oriented environment for
defining data, behaviors, structures, and hardware
states. PERFORM is a highly general
stimulus-response system which allows the user to
define actions, or events, in a predefined logically
structured stimulus-response syntax, or in the
native language of the machine. The user may
also utilize pre—defined events (like system clocks,
enabling or disabling actions, or reading data, from
and sending it to hardware devices) to control the
execution of morphologies or to link the system to
performance oriented input structures (like a
motion sensor, or pitch follower)., EXECUTE is a
"polyphonic® morphology executive, which
determines the order and nature by which data
structures are ‘sent” to the Virtual Device
Interface, which in turmn determines the eventual
sound producing hardware destination., EXECUTE
contains the intelligence for determining the nodal
and tendential behavior of a given morphology, or
given point in a morphology, and may or may not
use PERFORM to determine the stimulus-response
aspect of events., All three modes function
simultaneously, so that the data structures,
hardware states, and stimulus-response environment
may be edited during execution, In this paper, a
typical student session with HMSL is described.

HMSL (Version I) currently resides on an 5-100,
MC68000 based system with full graphics capability,
generalized /O (including high resolution DAC and
ADC), and a wvariety of digital and analog sound
producing peripherals, including a six-voice digital
waveshaping oscillator system. The entire system
is part of the Mills College Center for
Contemporary Music Hybrid Studio, and facilities

-exist for the system's communication with other

devices there, such as the TOUCHE keyboard based
digital synthesizer, a variety of input devices, other
small computer and hybrid synthesis systems, a
fully equipped 8-track recording studio, and a VAX
11/780 Berkeley UNIX BSD 4.2 system in the Mills
Academic Computer Center. HMSL (version 1) is
nearing completion of its implementation, and has
already been used in compositions by staff,
graduate composition students, and visiting artists.
It also serves as an invaluable pedagogical and
research tool at the CCM,

1. THEORETICAL, HISTORICAL AND
MUSICAL. MOTIVATIONS

1.] THEORETICAL AND MUSICAL

1.1.,1 Hierarchical Notions of Musical Structure The
design of HMSL is based in large part on the
authors' and others' long-standing interest and
research in hierarchical models of musical structure
(see Tenney 1961, 1977; Polansky, 1980, 1983,
Rosenboom, 1976, 1978; Tenney with Polansky,
1980), Essentially, we are concerned with models of
musical form in which the individual segregative
and cohesive components and procedures are
generalizable to various temporal and perceptual
levels, Much evidence exists that this model of
for the perception of structure strongly reflects the
way that our cognitive processes make formal
distinctions, both statistically (that is, regardless of
the ordering of the input stream), and
morphologically, in which the order of the input
stream is considered along with the values of the
data. The approach taken here depends on the
assumption that many of the perceptual processes
that distinguish musical entities on one level {(like
the grouping of a series of short events into a
'phrase") are archetypically the same as those
which group larger units (like "phrases" into
sections), Tenney has explored these notions in
detail (Tenney with Polansky, 1980), but mestly in

terms of the statistical grouping of musical events
into a formal representation. In HMSL, one of the
main concerns is with processing and creation of
complex morphological data.

1,1.2 Morphological Transformations In HMSL, we
have defined a morphology as a set of values with
an associated ordering, The transformation of one
morpholegy inte another, is a process that we
consider to be fundamental to musical perception
and creation., Much of the language deals with
investigating the nature of these morphological
transformations. In addition, morphologies in HMSL
are hierarchical in nature: one "shape'" might really
be an ordering (by some predefined order operation)
of lower level such shapes, Implicit in this latter
concept is the notion of a morphological metric, or
a single-valued distance function for any two
metrics. With these operations, morphologies
themselves may be considered as single points in a
metric space, one that is definable by the
composer or experimenter. In the design of HMSL,
much attention has been given to the way in which
the composer may design her own morphological
metric spaces, and thus define the transformational
space in which musical processes may occur.
David Rosenboom has referred to these large scale
orderings of morphologies as "concept spaces" and
has used them extensively in the recent work,
Zones of Influence {Rosenboom 1984-5; see also
Rosenboom 1984b). In this muiti-movement work for
computer and percussion, Resenboom has used
correlation functions to map the distances between
successive transformations of a source morphology
to an origin and a target, and used the computer
to plot “trajectories" through the "concept space'.

Correlations are one example of a morphological
metric which is non-order preserving, where a
rearrangement of the set will not give different
results for the function. Another example of that
class of metrics might be a measure of similarity,
suggested by Temney and others, defined as the
union of two sets divided by their interesection.
Order preserving metrics are more difficult to
define and less common, One example is a metric
which might be called a "transition matrix" metric,
in which the distance between two morphologies is
a measure of the intersection of two matrices in
which the individual cells are -1, 0, or 1 depending
on the direction of change between all values in
the morpholegies, This metric reduces magnitude
information completely {unlike the correlation), but
preserves an important measure of comparison
between the "pure" shape (up or down) of the two
morphologies, A further extension of this would be
to ceonsider the first order difference functions of
the two morphologies in like marmer. In addition,
any of these measures might be combined, with
appropriate weights to reflect the desired
perceptual significance, to produce a meaningful,
highly useful, and experimental notion of musical
transformation. Classically, these processes have
played a fundamental rele in composition, from
early fugal forms to the limited transformation
processes of serial technique. HMSL attempts to
afford the composer with ability to study the
different effects of distance functions upon
compositional ideas,

1.2 HISTORICAL MOTIVATIONS

Several other factors, not all strictly theoretical,
have influenced the language design, One such is
the attempt to create a composition environment
which is, as much as possible, non-stylistically
based, or at least not fundamentally motivated by
a desire to imitate certain historical compositional
procedures. We are interested that the language
should afford the composer the facility to recreate
a given sytle or historic method, should {s)he wish
to do so, by simply building upon the axiomatic
constructs of the language itself, Thus, the nature
of those axioms should not preclude the possibility
of embedding other notions of musical form,
including the more traditional ideas of 'notes,
equal octave divisions, and so on. HMSL contains
no reference to these types of ideas, nor does it
have any predefined relationship toe conventional
input structures (like the keyboard), but it does
allow the user to define these in a rather
straighforward manner, It would be possible, for
example to define a "front-end" for the language in
which the data structures were represented in
conventicnal notation, and subjected to the
morphological and stimulus/response procedures in
the same way as more abstract data, As we will
explain below, "attaching" arbitrary input structures
to the language is rather simple as well, and
several different ideas have already been tried.

It is of great importance to us that the language
reflect as little as possible musical styles and
procedures that have already been implemented —
like conventional musical notation — and that it
begin from the standpoint of rather primitive
notions of form derived from cognitive and
perceptual experimentation and evidence, We hope
that from these ideas and their implementation, a
set of new musical styles might evolve, along with
their accompanying theoretical and linguistic
implications.

2, HMSL DESIGN AND IMPLEMENTATION

2.1} INTRODUCTION

HMSL consists primarily of three related program
modules, CREATE, PERFORM, and EXECUTE, each
of which - reflects a different type of user
interaction and program operation (see Figure 1)
All of these run simultansously, but each may he
disabled or enabled by the mouse. This enables the
system to run in various "configurations® depending
on the user's immediate need , For example, if no
predefined data structures are needed, and the user
does not need to do any editing of hardware states
or the stimulus/response configuration, both
CREATE and EXECUTE can be switched off so
that PERFORM, the stimulus{response event
processor, will run at top speed, Since HMSL is
imbedded in a large scan loop, it has the
advantage of being able to function in any or all
of its capabilities at any time. It has the
disadvantage, at present, of being slowed down at
times by complex editing actions or stimulus
processing, However, the significant use of parallel

wiva E== ouinon €—

R BT AT

NOLIVYIN €=
Yivae aNv
TOUINGD 30 pOTd -
SAHINOI WOD —
.
ISWH
F93aT0D STIW

JNTNW SANHCAMAINTD QS W3 NI

TSWH 40 MITAMHAO T TENOIA

£ oI TSINATA TINRAEE “IVHINGL S3¥a SXALYTIES0 TWAIa) TRYMOUYH oL

mm,?l 1111111 mmmm scancwa sewesern

EROUONT SINENEIE SHdYHE WINIAWZ3
Nl

[8..5:ﬁm SNOLLIT T ﬁunSNm
zo_...ouu..._ou\

AWoWAW

HJPOW

SRS ¥ P

was
AIVAUALNL L LY
FHATG TRIWIA i
fANaITTALNL
= L \
{9 NOLLDTTD IVt Hmagdtg NOLLM3X3 m.
NouszIn HIUIFTY
iz 02 Fa 340233X%3 .“
“-q¥ - WU (WOt kItd \
SRINIARLS et - 1
SIIADG OISR 1
STRITNRL ST
THOILYMIBWAT Y roaT H Fyre -
e N1 500 — oo 2 b4 :
SANTYA R3O Wl t
TIIATT AD = t
MINWILS, !
> i
1
243 :
: Arvag m. ¥ $300W
- NOLLYY WALLSAR
WA DHAT M WOLLIITION AN) o
SISNIINIL/ SHAON JONYHD FShousIA zxoumm_n_ _.. ﬁu.“n4zu
SRS nvot
SLRAD LEISSY | 1
SHDOTH sRdakL 1ag | oMM wouoy 1 | EhE || Eama
HILIMG 90 ASX ¥3s | asnol
FHMQUVH L35 1
SHTLIY TSI ATHYNE 1
SLAAATING Ndd Tonsuds i
1
1
r 213] “
i
Allll llllllll WAAI0Y I3y e NOLLDETIOD And “
SNOLLIY F1QYNI H
SHOLLDY LI H
SWaDASHYRL MIIA 3 N
N SATY ANITHCIHY 1
> SIULAM dvid

NV

SHIYES SONIOWAL TYCON ITHVHD QN 2UNGHY

(RUOIAYHES 11GA

$HJEOW JHOLS

SHAUOW NiYdWOD

SHAHOW LA
SHANOW ALvauy

processers {like waveshaping digital oscillators and
real time function processors for envelope
generation) alleviate the need for the system to do
much time-consuming and unnecessary
computation. The future integration of interrupt
controlled devices and parallel analog and digital
signal processing equipment will also add greatly to
its synthesis power and speed,

2.2 CREATE

CREATE is the mode of the system used for all
screen oriented user interaction. It is primarily
mouse driven, though terminal input is wused
sometimes for alphanumeric strings, such as when
the user wishes to name a data structure., The
mouse used at present has four switches, and a
general protocol is used for switch functions, so
that the user may quickly gain an intuitive sense
of what to do even in unfamilar territory. For
exampie, Switch #1 is generally wused for
performing an action or for selecting a menu
option; Switch #2 is used to move up a level in
the menu hierarchy; Switch #3 is used in general
to initialize, redraw or clear a screen (like a
waveform transformation table, or hardware state
display); and Switch #4 is used to perform a
"subsidiary" action to Switch #1 (like selecting a
waveshaping table to be edited by Switch #1).

When CREATE mode is enabled, HMSIL is menu
driven, and all editing of formal and sonic
parameters produce results in real-time, Some
typical GREATE functions cuwrrently implemented are:

— draw or edit a waveform transformation

table

— enable or disable system modes

(CREATE, PERFORM, or EXECUTE)

— enable or disable a stimulus/response

action (see PERFORM, below)

— change the values of any existing

hardware function (pitch, spectra,

timbral and frequency modulation

rate and index, amplitude, stereo

location, ete.)

— edit and create envelopes

— edit and create data structures, and
(See Figure 2)

reconfigure nedal tendencies and weights

(see EXECUTE, below)

— create and edit "concept spaces",

through which morphological

trajectories are plotted

— change the values of arbitrarily

reassignable drawbars (called in the

system "Analog Control") which may affect

any large or small scale value in the

system

Since the main synthesis device at present (but not
the only one) is a six~voice digital waveshaping
oscillator, the system provides several methods for
the creation and editing of waveform
transformation tables. These methods are: draw an
arbitrary waveshaping table, deform a sinusoid
(represented as a diagonal line for the sinusoidal
transfer function), the *rubber band method"

HousE r.unon—_.f\ RSO B ACTHOD
€ ———— BREAKPOINTS

+
b
f

{DRAW MORPH)

USER DEFINED AXIS

MORPH 1

USER DEFINED AXIS

MORPH NAME H (LURARNT HOR$H HANE)

DIMENSION WS (WHICH DIMENSION DISPLAYED)

ST. PT. I (STARTING PEINT OF MORPH IN DISPLAY)
END PT, H {ENDING POINT OF MOAPH IN DISPLAY)

D DISPLAY D EAECUTE D STORE D EDIT D OVERLAY D EDIT DIMENSION
D ZO0K [j SCALE D CREATE {:) ASSIGN D ASSIGN D LiBRARY

FIGURE 2: MORPH EDITING

(stretch the waveshaping table from two selected
points to a third), and plot the spectra of the
desired waveform., The latter method uses a
Chebyshev transformation to compute the necessary
waveshaping table for the desired spectral
configuration, (the code for this routine was
adapted from a program contributed by Martin
Bartlett), The user can hear the effects of each of
these processes simultaneously with their operation,
and these routines serve as an invaluable
pedagogical tool for the teaching of synthesis
techniques, especially non-linear synthesis, In
addition, the "knob-tuming" character of this
approach provides interesting and useful kinesthetic
feedback when one is designing sounds, especially if
other complex formal and- timbral processes are
occurring simultaneously. In this way, we have
integrated much of the immediate control of more
traditional analog synthesis systems with the power
gf a more intelligent and precise digital
instrument, Of course, the contents of any of the
slx waveshaping tables may be changed easily under
algorithmic or stimuli activated control, For
example, natwral sounds may be "'sampled",
processed, and the results stored in waveshaping
tables in response to predefined stimuli. This often
produces interesting {and still surprising) results. In
addition, any of the six "voices" (FM and TM
capable oscillators) may be assigned to any
waveshaping table at any time by the mouse or
other system control, ,

2.2.1 Other Editing Most other CREATE functions
in the system are accomplished rather simply — by
peinting the mouse and pressing a switch, Editing
functions are a part of the system which are
continually expanding and evolving to meet the
needs and reflect the ideas of composers and

users. Curently we are designing various ways to
create envelopes and assign them to parameters,
Envelopes may also be typed into the system in a
simple way, as a two-dimensional array (value,
time}, and are arbitrary in length. In addition, a
given envelope may be dynamically reassigned to
any sonic parameter by the system either
algorithmically or in response to stimuli (see
PERFORM). Editing of data structures and
Universal Behaviors will be discussed below.

The "Analog Control® capability allows the user to
link any value in the system (pitch of an oscillator,
temporal density of a sequence of events,
probabilistic values, time values for an envelope,
weighting of a distance function, rate of change
for a piece, etc.) to any or all of eight arbitrarily
assignable and mouse controlled graphic 'drawbars",
Thus, the user has the ability to "twn knobs® to
control any value (s)he wishes, and the assigpnments
or weighted effects of those "knobs" can change
under system control or via the stimulus/response
actions.

The Action Table (see PERFORM, below), may also
be edited in a rather simple but useful fashion.
The names of all defined actions ({stimuli and
responses) appear on the screen when the Action
Table is selected. By pointing and switching the
mouse, actions are enabled and disabled so as to
have real time control over the event processing
configuration of the system. For example, if the
pitch of a group of oscillators is responding to
algorithmic control as well as the input pitch of,
say, a marimba, one might easily enable and
disable the input from the marimba in real time
via the Action Table to significantly alter the
musical results,

2.3 PERFORM

In HMSL, the stimulus/response environment of the
system is defined as a set of actioms, which are
rouiines written in a combination of the resident
computer language {in this case either high-level or
assembler) and a predefined syntax which allows
the user the ability to create simple actions easily
without having much programming expertise,

The syntax for an action definition ist

ACTION::=id <STIMULUS LIST> <LOGICAL
OPERATORS) IF <RESPONSE LIST> ELSE
{RESPONSE LIST> THEN ;

Thus, the user may use any of the predefined
stimuli (like reading an ADC, the pitch or other
parameter of an oscillator, a barware or software
clock value, trigger, or mouse position), test the
value, and execute a predefined response (send a
value to a voice, to the DAC's, set a clock, enable
or disable another action, fill a waveshaping table,
execute a data structure, begin an envelope, etc.),
The conditional tests are done in the high level or
low level language of the machine. It is important
to note that these actions may also be defined as
complex machine procedures if the user so wishes
and has the programming ability, and may be
embedded in the action table simply with the
necessary id.

When the PERFORM mode of the system is
enabled, the system scans the action table from
the first to the last currently defined action. If
an action is enabled {either from software or by
the user), its stimuli are tested and, if conditions
are met, the responses are activated. Thus,
complex actions whose responses depend on the
main processor for execution will significantly alter
the speed of the system as a whole. We bhave
evolved and are evolving various techniques, both
in software and hardware, for avoiding this type of
inconvenience, Generation of envelopes does not
tie up the system in this way and, so far,
stimulus/response actions have not created speed
problems for the composers using the system. The
Action Table contains several of its own software
counters and hardware clocks, Among the current
utilities avatlible to the user is the ability to set,
increment, and decrement the clocks, turn other
actions on or off, and send envelopes, All common
hardware devices (ADC's, DAC's, IO Ports, mouse,
graphics drivers, oscillators, function processor) are
"brought out® as simple stimuli and responses to
the Action Table, and are easy for the composer to
use. The Action Table is currently capable of
storing 512 actions at one time, and each action
may consist of program code of any length. ‘The
512 limitation is due to the current memory
confipuration and graphics screen size, and is easy
to upgrade should the hardware configuration
enlarge.

The possibilities of HMSL's stimulus/response
architecture are of great interest to us, and are
the subject of a considerable degree of
experimentation, At the Center for Contemporary
Music, one area of research is the design of input
structures for intelligent music systems, The
Action Table affords an easy to use and powerful
tool for this experimentation. For example, a
keyboard might be tied to the language by simply
naming it as an action, and defining the response
to different keys (in fact, this has been done with
several acoustic instruments). MIDI devices are
currently being interfaced to the system as well, as
are user utilities for pitch and envelope following.
A further area of research currently planned
involves the use of biofeedback techniques with this
system (Rosenboom, 1975 and 1984a).

2,4 EXECUTE

EXECUTE, the polymorphous data structure handler,
is the last module of the system to be coded in
full. The projected implementation date is Fall,
1985, EXECUTE is that module of the system in
which data structures are sent to various devices
for sonic or other realization.

2.4.1 Data Structures HMSL recognizes five types
of data structure: elements, shapes, collections,
productions, and structures, all generically called
morphs {short for "morphologies"), They are defined
as follows:

— an ELEMENT is an n-dimensional set of
values (ELEMENT:: =id {n-dim}> <{set of
values);)

— a SHAPE is an n-dimensional array of
given length (SHAPE:: =id<length, dimension>
{set of values);)

— a PRODUCTION is a user—iefined or
library routine which produces data (see below
for details)

— a COLLECTION is an n-dimensicnal array,
of a given length with a hardware identifier
(VDI Op-Code). COLLECTIONS differ from
SHAPES and ELEMENTS in that they may
contain as values pointers to other morphs:
ELEMENTS, SHAPES, PRODUCTIONS and
COLLECTIONS. (COLLECTION::=id{dimension>
<lengthy $(ELEMENT|SHAPE| PRODUGTION]|
COLLECTION} {VDI OP-CODE};)

— a STRUCTURE makes a collection which
is executable by the system. Distinguishing it
from a collection is a list of link

tendencies from any component collection in
the structure {node) to any or all of the
others, and a nodal weight for each of

its component collections. The default
structure for a collection is a set of
sequential links from each node to the next

(STRUCTURE::=id{COLLECTION>{NODAL LINK list>;

NODE;={(MORPH pointer>{Nodal weight>
{Behavior code) <set of links to other nodes);
LINK::=NODE pointer> (LINK Tendency;)

Elements are the simplest morphs, roughly
corresponding to notes® in conventional
terminology. They are distinguished from shapes
only in their length restriction, and this distinction
is made less for theoretical than for practical
purposes, Neither an element nor a shape may be
executed by the system.

Collections are the basic mechanism of heirarchy in
HMSL, in that they may include other collections
{or, in fact, themselves, in a recursive manner)
which may in twn include others. At some point,
however, nodes in a collection must eventually be
data, either in the form of shapes or elements.
Each collection is assigned upon its creation to a
given existent hardware device through the Virtual
Device Interface Qp-Code. This is software which
interprets basic information and routes it to the
appropriate hardware, This facility of the system
allows, we believe, for a high degree of portability,
since that part of the language is the only place
where the specific requirements {both software and
hardware) of various devices and their drivers are
known., The VDI requires such data as length,
dimensionality, time references, and stimuli to
execute a collection.

Productions are user definable algorithmic routines
which generate data. Productions have the
following generalized syntax:

PRODUCTION::=id{input datafparameter
passingy {pattern/condition matching>
{procedure); (N.B. This procedure may
include compilation style creation of
other data structures as well.)

The notions of metrics described above are included
in the definitions of these morphs in that the
parameter passing input may take the form of a
set of shapes, and the ®procedure’ may be a metric
ordering function, creating a new morph which is
the "concept space" of the input morphs under the
metric. Productions are written in the 'native®

language of the machine implementation {either
high or low level code), and are treated as morphs
by collections in that they have nodal weights, and
are routed by the executive to an appropriate
device.

Structures are the highest level morph, and are the
data structure in which the concept of 'directed
execution" is embedded in the system. Each
component collection of a structure has two things
associated with it: a nodal weight and a list of link
tendencies pointing to other collections in the
structure, It is these values which determine in
what order collections in a structure are executed,
and in turn other morphs, No other morph but
structures may be passed to the executive, Note
that device information is held more locally, in the
collections, to allow for greater output flexibility.

These weights and tendencies constitute a modelling
facility for the specification of dynamic musical
behaviors and perceptual strategies, The links and
nodes are all under algorithmic control, so the
activation of given stimuli or ction may
affect them, and dynamically alter the large scale
musical form being heard in complex ways,

FIGURE 3:
NODAL WEIGHT and LINK TENDENCY EDITING

COLLECTION: FOO
Ce COLLECTION E*ELEMENT
44 SHAPE P PRODUCTION

FOO= Ci...Cq/Sp . 53/ B0 . Ex/ B o By

Yy

1

NODAL
YALUES

TENDENCY OF £« NO CONNECTION TO SOURCE

TENDEMCY STRENGTH

n + " +
¥ t t t T L)

ey TENDENCY (FROM SOURCE MORPH]}

Graphic utilities in CREATE for the editing and
defining of stuctures are currently being
implemented. Figure 3 shows one model for
formulating such an idea. In this figure, the x-axis
represents the link tendency from a given morph to
the morph under consideration (in this case, a
collection named FQO). The Y-axis represents the
more "absolute" nodal weight of the morphs in the
graph, irrespective of the '"source' morph FOO.
Note that these morphs' relations to the Y-axis
would be identical for all source morphs within this
structure. This graph shows one way a user might
quickly define the large scale form of a piece, a
section of a piece, or some sonic environment, by

simpling moving morphs around in the graphic
space. A solid line between the source morph and
another indicates a link (whose magnitude is its
X~value). A morph which is directly vertical to the
source, but not connected by a line (like CIl, S1,
and CZ2 in this example) is a morph whose link
tendency to the source is ((which means that it is
impossible for that morph to sequentially follow the
source morph). A morph's Y-value is its weight.,
One rather unusual ramification of this graphic
approach is that morphs which are graphically most
distant from the source are actually those whose
link tendency implies that they are nearest to it in
execution (for their tendency wvalue is the
greatestl). Experimentation with this facility may
suggest inverting the X-axis display to make it
more intuitively representation of our concept of
structural distance between morphs.

2.3.2 Polymorphous Execution The performance
executive action of HMSL is rather simple. The
user instructs the system to "execute" a structure
(whether via the terminal, graphically, or under
software or stimulus control), and that morph iz
placed in a circular stack and its values sent to
the appropriate hardware., The execution stack is
theoretically infinite in depth, but memory and
speed limit it significantly, When a structure has
been completely executed it is removed from the
stack. The polymorphous executive keeps track of
several things:

— which structure is being executed
— the order of structures in the stack
— its current position within each structure,
requiring a significant amount of nesting, since
morphs are inherently hierarchical
— the values of relevant system clocks and
hardware values (updated in PERFORM) to
control execution of values
— the next collection in a Structure that
must be executed,
This last is calculated as an orthogonal sum of the
nodal weiphts and link tendencies from the cwrent
collection,

With this method, it is clear that most, if not all
structures will continue to execute until they are
removed from the execution stack by some
stimulus, That is, there will always be a 'next
place to go', as defined by that collection in the
structure with the highest combination of nodal
weight and link tendency, However, one last
characteristic of the system, called wuniversal
behavior, needs to be discussed. Universal
behaviors are a set of routines whichk affect the
tendencies and weights of collections in a
pre—defined, system-wide manner. Initially, the
design of HMSL allows for just a few of these as
system routines, but plans for user definable
behaviors exist.

Two illustrative examples of umiversal behaviors
would include what we have been calling "resonant
and "decadent® behavior, In the former, each time
a collection is called, its weights and tendencies
increase proportionally to the other collections in
its structure so that eventually no other morph
may be executed -- much in the way that feedback
gradually "takes over® an audio path if encouraged
to do so, "Decadent® behavior would be one in
which the likelihood of a given collection being

executed decreases each time it is called. When
there is no possiblity of moving to another
collection in a structure, that morph is removed
from the stack, Another, possibly obvious, example
would be stochastic procedures wherein the path
taken through nodes in a collection may be the
results of certain probabilities caleulated within the
system in relation to weights and tendencies,

Initially, the user will be able to choose between
16 such hehaviors during the system's real-time
operation, effecting the musical form in that way.
In addition, productions and actions may affect the
rate of change of a given behavior (how resonant
or decadent}), or may switch from one to another.
These parameters may also be placed under
"drawbar® control if desired. Later on, a syntax
for user definition of her own universal behaviors
will be established and implemented,

3. CURRENT HARDWARE, SOFTWARE,
ard STUDIO ENVIRONMENT

3.1 HARDWARE

HMSL currently runs on an S-100 based ERG
MC68000 microprocessor, running at 8 MHZ. The
5-100 bus also includes:

— 320 kb. memory

— interface card for two 8" floppy disks

— 512 x 480 pixel display, monochromatic
graphics card, with on-board Z-80 MPU

— two I/0 cards, with various highly
programmable parallel and serial ports and
real-time clocks

— 32 channels of high resolution ADC, and

4 channels of high resclution DAC

— interface card for digital oscillator system

Also on the system are a terminal, graphics
monitor, dot matrix printer, two floppy disk drives,
and optical mouse, Cuwrent sound output devices
include a six-voice, pipelined, multiplexed digital
oscillator which implements an advanced, non-linear
waveshaping synthesis algorithm (designed by Buchia
and Associates), This algorithm allows efficient,
relatively inexpensive generation of an extremely
rich timbre domain for sound creation requiring
relatively little host processor overhead to keep it
running.

3.2 SOFTWARE

The MC68000 CPU card contains a bootstrap
version of FORTH-79 in ROM, and this serves as
the underlying operating environment, The GCM
expanded operating system contains a fully
implemented assembler, extensive programmer
utilities and math functions, primitive level and
user accessible drivers for all system hardware, and
a graphics language, HMSL is written in 68k
Assembly language and FORTH, and as development
proceeds, more and more of the FORTH code is
being "ranslated" to assembler to acheive pgreater
execution speed,

3.3 STUDIO ENVIRONMENT

The HMSL system currently resides in the Center
for Contemporary Music Hybrid Studio, which
contains a wide vartety of analog and digital
devices, as well as teaching facilities, At present,
four other computer systems exist in this studio
which are are useful in the HMSL environment:

— a TOUCHE keyboard based digital

instrument, which contains similar synthesis
equipment to HMSL. The TOUCHE has a
considerable software base, including

FOIL~83 (Far Out Instrument Language), and
MFOIL (Meta-FOIL), designed by David Rosenboom
and, plans exist for interfacing this

instrument to HMSL

— PATCH-IV, a hybrid contro] language,

which uses the same function processing unit

that exists in the TOUCHE and is similar to

that used with HMSL

~~ a VAX/UNIX link, which we plan to use to
provide data for HMSL, in very large

applications.

— an HP-6400A logic development station, with
68000 emulation capabilities, C compiler, software
performance analysis, and logic timing and
analysis modules, This system is useful for HMSL
hardware and software development, and will be as
well in VAX/6800¢ communications

The studio is also well-equipped with analog digital
signal processing, conditioning, and synthesis
equipment, (more and more of which is MIDI
compatible) including envelope followers and a
Gentle Electric Pitch Follower (distributed by Serge
Modular). High quality mixing, recording, and
monitoring facilities exist as well (quad and stereo),
and the studio is adjacent and linked by audio and
control lines to the CCM multi-track recording
studio (which also contains several outboard signal
processing devices) for more extended recording
projects,

3.4 LATER VERSIONS

Plans currently exist to write several other versions
of HMSL for other, more common systems. The
design of HMSL emphasizes hardware independence,
via the VDI and the heavy reliance on data types
as a determinant for the language, The next
implementations will probably include one for the
Apple Macintosh (much of the code is already in
68000 assembler), using the SUMAC development
environment, a version in C for the VAX 11/780 at
Mills {UNIX BSD 4.2)

3.5 CURRENT DEVELOPMENT

HMSL is running, as of June, 1985. However,
certain sections, like a full version of EXECUTE
and some of the more advanced editing ideas
(nodes and tendencies, Universal Behaviors) are
presently being coded. The system is fully usable
in the studio environment, and has been a valuable
educational resource as well. The operating system
and CCM system utilities have been fully
documented by Larry Polansky and John Levin of
the CCM {with additional assistance from Richard
Zvonar), and are on UNIX and availible to
students. DPocumentation for HMSL, also on UNIX,
is nearly complete,

A "working" version of the language has only been
available to students and composers for a few
months, but several works have so far been
produced. Two graduate thesis concerts made
significant use of it (including Jin Hi Kim's Su Wol

Yong Yul for computer, harpsichord and 'cello), and

several other students have composed and/or
experimented with the system. CCM staff have
also written and worked with the system and one
invited composer (Ron Kuivila) made extensive use
of the system (including contributing in interesting
ways to the software development) in a concert at
Mills in March with CCM staff member Larry
Polansky,

HMSL has heen used in all of the electronic music
classes at Mills (both undergraduate and graduate),
and has been the subject of several public
demonstrations and seminars. We expect use of
the system to increase exponentially in the cwrent
school year, since the language is far more
developed and the documentation has progressed
well, In addition, we hope and believe that
students and guest composers will contribute to the
conceptual and implementational development of
the system in a variety of ways.

References

Clynes, M. (Ed.). (1982) Music, Mind, and Brain.
Plenum Press, NY.

Deutsch, D. (Ed.). (1982) The Psychology of Music.,
Academic Press, NY,

Fu, K.5.. (1974) Syntactic Methods in
Pattern Recognition, Academy Press,

Minsky, M. (1979) "Music, Mind and Meaning".
Computer Music Journal, 3/4,

Polansky, L. (1980) "A Hierarchical Gestalt
Analysis of Ruggles' 'Portals',

Proceedings of the 4th Intnl, Computer
Music Conference. Northwestern
University Press,

Polansky, L. "Morphological Metrics", seminar
given on Mills Seminar in Formal
Methods Series, 1980, and as Mills Faculty
Colloquia, 1983,

Rosenboom, D, (Ed.). (1976) Biofeedback and the
Arts: Results of Farly Experiments. A.R.C
Pub., Vancouver, B.C.

Rosenboom, B, (1976) "A Model for Detection and
Analysis of Information Processing Modalities
of the Nervous System through an Adaptive,
Interactive, Electronic Music Instrument".
Proceedings of the Music Computation
Conference, Univ, of Ill, Press,

Rosenboom, D. (1984a) *On Being Invisible".
Musicworks Z28.

Rosenboom, D. (1984b) “Study for ZONES".
Musicworks 28 {audio cassette).

Rothenberg, D. (1976) "A Non-Procedural Language
for Musical Composition”, Proceedings of
the Music Computation Conference, Univ.
of Ill, Press,

Shepard, R, (1962) "Attention and the Metric Structure
of the Stimulus Space®, Bell Telephone Labs
Technical Memorandum, 10/19/62,

Shepard, R. (1962b) "The Analysis of Proximities:
Multidimensional Scaling with an Unknown
Distance Function®. Psychometrika, 27,
125-1440,

Tenney, J, {1961) Meta + Hodos — A Phenomenology
of 20th Century Music and an Approach
to the Study of Form, Privately
circulated ms,

Tenney, J. {1977) *META Meta + Hodos". Journal of
Experimental Aesthetics, 1, A.R.C
Publications, Vancouver, B.C.

Tenney, J,, with Polansky, L. (1980) "Hierarchical
Temporal Gestalt Perception in Music;

A Metric-Space Model". Jowrnal of Music
Theory, 24/2. ,

Thompson, D. (1952) On Growth and Form, Cambridge

University Press, -

