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1. INTRODUCTION

HE STUDY OF CONTOUR—important in music theory, cognition, and
ethnomusicology—is motivated by an interest in melodic similarity

and classification. Contour theory attempts to categorize, clarify,
analyze, and define basic melodic principles, as well as, more generally,
morphology—musical phenomena quantifiable in some parameter(s) as
change over time. Contour is fundamental to perception. As such, an
understanding of contour relationships, such as distance functions
(metrics), in contour space is essential.

A contour is an ordered set of directional relationships between
(quantifiable) elements, prioritizing “up/down/equal” over “how
much up or down.” The study of contour has often consisted of
categorical classification and a search for archetypes. The up/down
motion of things changing in time is one way to understand
morphology, or to paraphrase Henry Cowell, the “nature of melody”
in terms of a restrictive yet perceptually primal feature. The study of
contour relationships (particularly similarity) and categorizations is
fundamentally an effort to describe contour space.

T
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This paper presents new mathematical and computational tools to
visualize and understand the structure of contour space. By integrating
degrees of magnitude into contour representations—ranking (Marvin
and Laprade 1987) and n-ary contour (Polansky and Bassein 1992)—
we propose a formal unification of contour space with morphological
space. Since contour is an equivalence relation, we first examine contour
equivalence relations on the space of morphologies. Next, using basis
coordinate space (or simply basis space), we formally describe how
contour archetypes generate, and organize, all possible morphologies,
creating a single, highly-structured mathematical space, suggesting a
reconsideration of the usual distinctions between contour and mor-
phology.

In this paper we offer a formal description of the continuum of
direction and magnitude, via consideration of problems and ideas
raised by contour theory regarding the structure of combinatorial
contour (CC-) space.

2 THE STUDY OF MUSICAL CONTOUR

2.1 CONTOUR THEORIES

Some formulations of contour are reductive, typological, and
categorical (Adams 1976; Huron 1995; Seeger 1960; Kolinski 1965a,
1965), while others focus on measurable distances and relationships
between contours (Polansky 1981, 1987, 1996; Marvin and Laprade
1987; Marvin 1994; Morris 1987, 1993, 2001; Johnson 2001a, 2001b;
Quinn 1999). Theorists such as Morris, Marvin and Laprade, and
Friedmann (1985, 1987) utilize techniques, terminology, concepts and
standard transformational operations from post-tonal music theory
(inversion, retrograde, embedding), whereas Polansky and others have
focused on generalized mathematical tools.

2.2 LINEAR AND COMBINATORIAL CONTOUR

The distinction between linear contour—adjacent directional relation-
ships—and combinatorial contour—the network of such relationships
—is fundamental. Linear contour (LC ) is defined as a vector of
adjacent ternary directional relationships in a morph (M),1 a finite
ordered list of values.2,3 Combinatorial contour (CC ) is defined by the
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half-matrix of pairwise relationships in a morph (Morris 1987, 2001;
Polansky 1996, 1987, 1981; Quinn 1999; Marvin and Laprade 1987).
By convention, we use −1, 0, and 1 to represent directional
relationships “is less than,” “is equal to,” and “is greater than.” The
CC half-matrix is often expressed in the literature as a vector, by
convention: relationships to the first element (top row), relationships
to the second element (second row), etc. The morph, LC, and CC all
have different lengths. For a morph of length L, the length of the LC
vector Llc is L − 1, and the length of the CC vector Lcc is (L2 − L)/2.
Example 1 shows LC and CC vectors for the morph [3, 4, 5, 1]m.

Contour—both LC and CC—is an equivalence relation on all
possible morphologies. Many different morphs have the same LC or
CC representation, but CC further distinguishes morphs that are
equivalent as LCs. CC restricts the range of magnitude variation of
represented values more than LC does, and thus is a more “accurate”
representation. Since CCs are equivalent to ranked morph elements,
greater contour lengths L allow for greater resolution of rank and
greater approximation of magnitude.4

Below, we describe a geometric representation which includes linear
and combinatorial contours in the same space, and consider some
ramifications of this unified space.

2.3 DISTANCE AND SIMILARITY

Considerable attention has been paid to the measurement of contour
similarity. Similarity functions, and more powerfully, metrics, are a way
of understanding the structure—perceptually and mathematically—of
contour space. Marvin and Laprade’s CSIM (contour similarity measure)
is based on the COM-matrix, measuring difference by counting the

Morph [3, 4, 5, 1]m

LC [−1, −1, 1]lc
[d(a, b) d(b, c) d(c, d)]

CC [−1, −1, 1, −1, 1, 1]cc
[d(a, b) d(a, c) d(a, d) d(b, c) d(b, d) d(c, d)

EXAMPLE 1: STANDARD VECTOR NOTATIONS FOR

MORPH (VALUES), TERNARY LINEAR, AND COMBINATORIAL CONTOUR
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number of corresponding elements that are the same between two
COM-matrices. Similarly, Polansky’s Ordered Combinatorial Direction
metric (OCD) (1981, 1987, 1996) allows for a number of similarity
measures on morphologies of the same length. Morris’ contour reduc-
tion algorithm (1993, 2001), Marvin and Laprade’s CEMB (contour
embedding function) and Polansky’s Unordered Combinatorial Direc-
tion metric (UCD), as well as various ways of applying the latter’s
OCD metric, allow for similarity measurement between contours of
different lengths.5 

Example 2 shows three, simple, four-element pitch sequences (morphs)
represented as rankings (bold), and CC (half-matrices, below). The LC
distances (OLD)6 and the CC distances (OCD) (both described
below) are shown in Example 3.

In this paper, we present some new formulations for distance in
contour space, incorporating multiple features of contour, including
different magnitudinal resolutions.

EXAMPLE 2: THREE SIMPLE FOUR-ELEMENT PITCH SEQUENCES.
THE FIRST MELODY (RANKING: [1320]) READS: THE FIRST VALUE IS LESS

THAN THE SECOND AND THIRD, AND GREATER THAN THE FOURTH; THE

SECOND VALUE IS GREATER THAN THE THIRD AND FOURTH; THE THIRD

VALUE IS GREATER THAN THE FOURTH. LCS ARE SHOWN AS THE

DIAGONALS OF THE HALF-MATRIX

(1, 2) (1, 3) (2, 3)

OLD 0.33 0.0 0.33

OCD 0.16 0.5 0.16

EXAMPLE 3: COMBINATORIAL (OCD) AND LINEAR (OLD) DISTANCES

FOR ALL PAIRS OF THE THREE MORPHS

rank: 1 3 2 0 0 1 2 3 3 2 0 1
CC half-matrix: −1 −1 1 −1 −1 −1 1 1 1

1 1 −1 −1 1 1
1 −1 −1
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2.4 IMPOSSIBLE CONTOURS

Polansky and Bassein (1992) formally distinguish between possible
and impossible CCs en route to determining the number of possible
contours for a given length. They (and Morris [2001]) note that many
CCs (Morris’ COM-matrices) are impossible because of transitivity
violation. Impossible contours are thus “holes” in CC-space. As CC
length Lcc increases, the number of impossible contours grows much
faster than the number of possible contours.

Impossible contours may be detected by inspection. Polansky and
Bassein’s mathematical proof uses a combinatorial argument to show that
the number of possible CCs of length Lcc is “the number of ways to
place L balls in h boxes with no box empty,” demonstrating as well the
equivalence of previously proposed CC enumerations. They also propose
the question: “What is the organic construction of CC-space, avoiding
either a generate-and-test approach or ranking-style enumeration?”

In this paper, we describe an endemic mathematical method for the
geometric description of (possible) CC-space—including only and all
possible CCs.

EXAMPLE 4: FIVE SIMPLE FOUR-ELEMENT DURATION SEQUENCES (MORPHS),
REPRESENTED AS RANKINGS AND CCS

rank: [43210]
CC: [1111/111/11/1]

rank: [40321]
CC: [1111/−1−1−1/11/1]

rank: [04123]
CC: [−1−1−1−1/111/−1−1/1]

rank: [21304]
CC: [1−11−1/−11−1/1−1/−1]

rank: [01234]
CC: [−1−1−1−1/−1−1−1/−1−1/−1]
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2.5 LENGTH (L) AND MAGNITUDE (N)

Most previous work has focused on ternary contour (Polansky and
Bassein 1992): three distinct directional relationships (less than, equal
to, greater than).7 Polansky and Bassein also propose the idea of n-ary
contours : those that represent any number (> 1) of intermediary magni-
tudinal values (approaching, eventually, the morph itself). Two properties
of CC are thus length (L ) and magnitude (or resolution: n).

Contours for morphs of L = 3 constitute large equivalence classes,
with infinitely many “melodies” in each. As magnitude (n) increases,
the set of CCs approaches a one-to-one mapping of the set of morphs.
The geometric representation of CC-space described below integrates
magnitude and direction into a single continuum. The first step in this
approach is the observation that the set of possible CCs is a strictly
proper subset of the set of LCs.

3 LINEAR CONTOUR SPACE

3.1 REPRESENTATIONS OF LC-SPACE

LC-space refers to the set of all linear contours along with various
relations, metrics, and geometric representations. As morph length L
grows, the number of LCs grows exponentially by 3L

 
−1 and the length

of LC vectors grows linearly by Llc = L − 1. Both the dimensionality
(contour length) and the “radius” (number of contours) of the space
increase quickly.

3.2 ENUMERATION BY LINEAR INDEX

Enumeration is a common and important tool in the study of contour,
usually involving ranking of the elements of a morph.8 A simple repre-
sentation of LC-space is enumeration by linear index, counting in a base-
3, or ternary number system (Polansky and Bassein 1992). LC vectors
are interpreted as base-3 numbers with digits −1, 0, 1 and converted to
base-10, assigning to each LC a unique value along a number line from
0 to (L − 1)3. This value is called the linear index. Number-lines of
different lengths can be normalized and overlaid, representing LCs of
any length along a single, common dimension, affording a simple
unidimensional metric between them. Example 5 shows LC-space of
morph lengths L = 2, 3, 4 enumerated by linear index.



EXAMPLE 5: LC-SPACE ENUMERATED BY LINEAR INDEX FOR L = 2, 3, 4;
EACH ROW CORRESPONDS TO A DIFFERENT CONTOUR LENGTH;

LCS ARE ENUMERATED ALONG THE HORIZONTAL AXIS BY LINEAR INDEX;
REPRESENTATIVE MORPHS FOR EACH LC ARE DRAWN

0 1 2

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26



EXAMPLE 6: ENUMERATION BY LINEAR INDEX.
 EMBEDDING STRUCTURE OF LC-SPACE FOR L =2, 3, 4, 5.

NODES REPRESENT LCS, AND EDGES BETWEEN NODES INDICATE EMBEDDINGS,
OR WHEN A SHORTER LC APPEARS EXACTLY AS A SUBSTRING IN A LONGER LC.

LCS ARE ENUMERATED ALONG THE HORIZONTAL AXIS BY LINEAR INDEX.
COLOR REPRESENTS THE NUMBER OF “IS GREATER THAN,” “IS LESS THAN,” “IS EQUAL TO”

TRANSITIONS INTERPRETED AS RGB COLOR VALUES.

L = 5

L = 3

L = 4

L = 2
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While linear index captures some general contour features, it is not a
particularly meaningful metric because morphological relationships are
distributed across intervals of powers of three—digits, representing
different orders of magnitude, flip, from right-most to left-most, every
30, 31, . . ., 3L

 
−1 counts. As a result, LCs that represent intuitively

similar contours may not be mathematically similar under linear index
distance—flipping a digit to the right or to the left affects linear index
by different orders of magnitude. Example 6 illustrates this by showing
embeddings, or instances when a lower length LC appears as a
substring in a higher length LC.9

3.3 GEOMETRIC INTERPRETATION OF LC-SPACE

Geometric representation clarifies features of LC-space not shown by
enumeration. LCs are represented as points in a hypercube of Llc = L − 1
dimensions, bounded by 1 and −1. Axis coordinates correspond to
contour values 0, −1, or 1. The nine LCs of L = 3, for example,
comprise only two values and are easily visualized as points in two-
dimensional LC-space—a square bounded by 1 and −1. All non-origin
points lie either on axes or diagonals and can be categorized into two
groups according to the number of on-axis, or zero elements (see
Example 7a). The dimensionality of the hypercube increases with LC
length, but axes remain bounded by 1 and −1. For example, each of
the 27 LCs of L = 4 comprises three values and becomes a point on a
three-dimensional cube (similarly bounded by 1 and −1). While the
geometric representation is useful for low dimensions, in order to
visualize the space, longer LCs require high-dimensional representa-
tions for plotting and visualization.

3.4 DISTANCE IN LC-SPACE

Distance functions—measures of contour similarity—are fundamental
to understanding the structure of contour space. Under Polansky’s
Ordered Linear Direction (OLD) metric, which measures how closely
two contour vectors align element by element and is the linear contour
equivalent of both Marvin and Laprade’s and Polansky’s combinatorial
contour metrics, CSIM and OCD, LC-space is a highly structured,
symmetric metric space. We first examine the structure of linear contour,
and then refigure combinatorial contour as a sparse and irregular subset
of linear contour.10 
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Distance in LC-space can be represented with a partition plot,
showing the distances from a given LC (source) to every other LC in
the space. The OLD between two LCs is the number of LC positions
that are different, divided by the LC length (L − 1). Interpreted
geometrically, OLD counts the number of shared axes between two
points, and partitions the space into L − 1 subsets that share 0, 1, . . .,
L − 1 axes with the source LC. Different source LCs partition the
space differently, according to OLD distance from that particular
source LC. Examples 7 and 8 show OLD partition plots for L = 3 and 4,
visualizing how distance throughout the space changes depending on
which LC is considered the source.

As the source contour changes, the partition subsets rotate around
the space. The number of subsets and the number of LCs within each
subset remain the same for each source. Subsets are categorized by
angle, shown in the flower plots of Examples 7 and 8. When the source
LC is the geometric origin [0, . . ., 0]lc, partitioning corresponds to
the number of non-zero axes in each LC. For example, for L = 3, the
two nonzero subsets are (1) the four vertices at an OLD distance of 1
and (2) the four axial points at an OLD distance of 0.5. In L = 4, this
expands to include one additional partition of axial points.

EXAMPLE 7: GEOMETRIC REPRESENTATION OF OLD DISTANCE BETWEEN ALL

PAIRS OF CONTOURS IN LC-SPACE L = 3. MORPH PLOT (LEFT) SHOWS

REPRESENTATIVE MORPHS FOR EACH LC. FLOWER PLOT (RIGHT) DRAWS

LINES BETWEEN EACH PAIR, ILLUSTRATING THE ANGLE BETWEEN THEM.
COLOR INDICATES OLD DISTANCE FROM THE SOURCE (WHITE) TO THE

EVERY OTHER LC IN THE SPACE (LIGHT OR DARK GRAY). THERE ARE THREE

OLD DISTANCE VALUES FOR L = 3 (0, 1/2, AND 1).

(A) MORPH PLOT (B) FLOWER PLOT



OLD = ALL OLD = 1/3 OLD = 2/3 OLD = 1

EXAMPLE 8: GEOMETRIC REPRESENTATION OF OLD DISTANCES BETWEEN ALL PAIRS OF CONTOURS IN LC-SPACE FOR L = 4.
FLOWER PLOTS SHOW ANGLES BETWEEN PAIRS FOR VISUAL CLARITY. COLOR INDICATES OLD DISTANCE FROM THE SOURCE

LC, LOCATED AT INTERSECTION OF ALL THE LINES. THERE ARE FOUR OLD DISTANCE VALUES (0, 1/3, 2/3, AND 1).
ONLY FOUR PLOTS ARE NECESSARY TO SHOW DISTANCES FROM ANY OF THE 27 POSSIBLE LCS BECAUSE THERE ARE FOUR

GROUPS, CLASSIFIED ACCORDING TO NUMBER OF ON-AXIS ELEMENTS: CENTER; OFF ONE AXIS; OFF TWO AXES; AND OFF

ALL THREE AXES. OLD DISTANCE PLOTS ARE IDENTICAL FOR EACH GROUP UP TO ROTATION. ALL OTHERS ARE ROTATIONS

OF THESE FOUR BASIC FORMS (OR THREE BECAUSE THE ORIGIN IS UNITARY)

(A) OLD FROM [0, 0, 0]LC

(ON ALL AXES)

(B) OLD FROM [0, 1, 0]LC

(OFF ONE AXIS)

(C) OLD FROM [0, 1, 1]LC

(OFF TWO AXES)

(D) OLD FROM [1, 1, 1]LC

(OFF THREE AXES)
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Distance from the geometric origin is called the normal partition
and is important for two reasons. First, it organizes the space into
groups of LCs whose partition plots are equivalent under rotation. As
can be seen in Example 7, partition plots for the four vertices of the
square are rotations of one another, and partition plots for the four
points on the axes are rotations of one another. Distance throughout
the entire space can be represented in terms of a smaller number (L − 1)
of fundamental OLD distance partitions, or components.

Second, these components—and consequently all OLD partitions
for source LCs other than the origin—are transforms of the normal
partition by the transform Tv, composed of translation by the source
LC vector v together with a modulus operation that wraps values
around the edges of the space. Translation moves every point by the
same distance and direction as the source is from the origin, and
modulus wraps values from 1 to −1 and vice versa when the magnitude
of translation exceeds abs() = 1. Tv maps each point from its location
relative to the geometric origin [0, . . ., 0]lc to an analogous location
relative to v. This allows us to recast linear contour in terms of the
structure of the normal partition together with the structure of the
transform, simplifying linear contour and expressing it in terms of its
underlying structure and symmetries.

A common problem that arises in the application of contour theory
to music composition is to find a contour (or all contours) a specified
distance from a given contour. This requires evaluating the distance
from the given contour to every other contour (as shown by a partition
plot). In the case of linear contour, this is simple because every LC has
the same distribution of OLD distances, regardless of its location. This
becomes more difficult for combinatorial contour (Section 4).11

3.5 MATRIX REPRESENTATIONS FOR HIGHER L

Distance partitions can also be plotted along a linear index, allowing
comparisons between OLD spaces for LCs of different lengths. A
dissimilarity matrix (DSM) as shown in Example 9 for L = 3, 4, 5
represents OLD distances between all pairwise combinations of LCs on
a two-dimensional grid, with LCs enumerated along each axis by linear
index. The DSM shows the OLD’s self-similar, or fractal, structure, in
which increasing LC length increases resolution—note that the DSM
of L = 3 (leftmost) appears repeatedly throughout DSMs of higher L
shifted in location and scaled in color intensity. This structure is the
result of OLD distance together with the structure of linear index
enumeration, or counting in a base-three system.
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LC DCM L = 3 LC DCM L = 4 LC DCM L = 4 OLD

EXAMPLE 9: DISSIMILARITY MATRICES LC-SPACE L = 3, 4, 5. OLD

DISTANCES BETWEEN ALL POSSIBLE PAIRS OF LCS WITH CONTOURS

ENUMERATED ALONG EACH AXIS BY LINEAR INDEX. COLOR AT EACH POINT

INDICATES OLD DISTANCE BETWEEN THE TWO LCS INDEXED ON EITHER

AXIS. EACH COLUMN (OR ROW) REPRESENTS A PARTITION OF LC-SPACE

WITH THE SOURCE LC OR ZERO DISTANCE IN BLACK. SINCE ALL

PARTITIONS ARE TRANSFORMS OF THE NORMAL PARTITION, EACH COLUMN

IS SIMPLY A PERMUTATION OF THE ELEMENTS IN THE OTHERS

EXAMPLE 10: USE OF THE TRANSFORM T AS REPRESENTED BY A
TRANSFORMATION MATRIX TO (A) MAP EVERY PARTITION BACK TO THE

NORMAL PARTITION AND (B) REPRESENT LC-SPACE (L = 4) AS THE

CONVOLUTION OF THE NORMAL PARTITION TAKEN OVER ALL SOURCES.
T IS REPRESENTED BY A MATRIX (MIDDLE MATRIX IN EACH SUBFIGURE) IN

WHICH AXES CORRESPOND TO LINEAR INDEX AND COLOR AT EACH ENTRY

INDICATES THE NORMALIZED LINEAR INDEX TO WHICH ONE LC IS MAPPED

UNDER T OF THE OTHER

1.0

0.8

0.6

0.4

0.2

0.0

(B) CONVOLUTION

(A) UNSCRAMBLE



L = NORMALIZED LINEAR INDEX OLD

EXAMPLE 11: NORMAL PARTITION (OLD TO THE ORIGIN [0, 0, . . .,0]LC) FOR LCS OF LENGTH L = 2 THROUGH L = 7.
CONTOURS ARE ENUMERATED ALONG NORMALIZED LINEAR INDEX, ALLOWING COMPARISON BETWEEN PARTITIONS OF

DIFFERENT LENGTH LCS, WHICH SHOWS THE SELF-SIMILARITY OF THE OLD AS CONTOUR LENGTH L INCREASES. AS

THE OLD GRAIN INCREASES, SO DOES THE FREQUENCY, OR THE RESOLUTION, OF THE RECURSION. PARTITIONS OF

OLD FOR SOURCE LCS OTHER THAN THE ORIGIN ARE PERMUTATIONS OF THIS STRUCTURE BY THE TRANSFORM T.

7

6

5

4

3

2

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
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The transform Tv can also be represented by a transformation matrix
whose value at each entry gives the normalized linear index to which
each LC (indexed by column) is mapped under Tv (where v is the LC
indexed by row). The transformation matrix unscrambles the DSM,
showing that all partitions are permutations of the normal partition
(Example 10a). The transformation matrix can also be used to repre-
sent LC-space as the convolution of the normal partition transformed
over all possible source points (Example 10b). The normal partition, or
distance to the geometric origin [0, . . ., 0]lc, is transformed by Tv, which
maps points from the normal partition to a new origin v, and summed
for all LCs. The structure of LC-space is primarily that of the normal
partition, shown in Example 11 for increasing LCs of increasing
lengths L. While this may seem trivial for linear contour, it becomes
significant for combinatorial contour, due to “holes” in CC-space.

4 COMBINATORIAL CONTOUR SPACE

Combinatorial contour has become the most common representation
used in contour theory. CC offers a greater degree of distinction—two
morphs may have the same LC representation but different CC repre-
sentations—and is thus a more accurate representation of a morph than
LC. CC-space, consisting of all vectors that represent possible CCs, is
complicated by “holes,” or vacant points that represent impossible con-
tours. CC-space is not a subspace of LC-space because the operations
of addition and multiplication almost entirely result in points which
represent impossible CCs. In this section we reconsider CCs as a subset
of LCs, a step towards a new understanding of the structure of CC-space.

4.1 COMBINATORIAL CONTOUR AS A SUBSET OF LINEAR CONTOUR

Like LCs, CCs are conventionally written as unidimensional ternary-
valued vectors. Any CC vector, whether possible or impossible, also
describes an LC of length Lcc. All CC descriptors are also LC
descriptors. In other words any CC vector describes two different
equivalence classes of two different lengths of morphs because CC and
LC vectors of the same length describe morphs of different lengths.
For example, the CC [−1, −1, 1, −1, 1, 1]cc for morph length L = 4
also describes an LC for morph length L = 7. The two identical
contour descriptions are equivalence classes of morphs of different
lengths. CCs are a subset of LCs.
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LCs can assume any length (> 1), but CCs may only assume lengths

equal to binomial coefficients of the form (L2 ) : 3, 6, 10, 15, 21, 28,

36, . . . . There are no CCs of Lcc = 2, 4, 5, 7, 8, 9, 11, 12, 13, 14, . . . .
Further, because of “impossibility” (intransitivity) (Polansky and
Bassein 1992), there are relatively few CCs for a given Lcc—few vectors
describe possible CCs. However, all LC vectors are possible for any Llc,
so holes in CC-space are occupied in LC-space by LC descriptors. For
example, there are 27 ternary CC descriptors for L = 3, only 13 of
which are possible Ccs.

As morph length L increases, the number of contour descriptors
grows more quickly than the number of possible CCs, shrinking the
number of possible CCs to a decreasingly small fraction of LC-space.
Extending Polansky and Bassein (1992), Example 12 lists the ratio of
the number of contour descriptors to the number of possible CCs as
morph length increases up to L = 12. These values are also plotted in
Example 13 on a logarithmic scale, showing how quickly the ratio
decreases. Even for morphs of length L = 12, the ratio of possible CCs
is astronomically small.

L LCC Num Contour Vectors (LCs) Num CCs Ratio

2 1 3 3 1

3 3 27 13 0.481

4 6 729 75 0.103

5 10 59,049 541 9.162e−03

6 15 14,348,907 4,682 3.263e−04

7 21 1.046e+10 47,293 4.521e−06

8 28 2.288e+13 545,835 2.386e−08

9 36 1.501e+17 7,087,261 4.722e−11

10 45 2.954e+21 1.022e+08 3.461e−14

11 55 1.744e+26 1.623e+09 9.301e−18

12 66 3.090e+31 2.809e+10 9.090e−22

EXAMPLE 12: TABLE SHOWING NUMBER OF LCS AND CCS, UP TO 12,
EXTENDING POLANSKY AND BASSEIN (1992)
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4.2 VISUALIZATIONS OF IMPOSSIBLE CCS IN CC-SPACE

The structure of CC-space—where the holes are located and why—
remains an open question. Example 14 plots the locations of possible
CCs within the space of CC descriptors as enumerated by linear index
for increasing morph lengths L. The lowest row, for example, shows
the locations of the 13 ternary CCs of length L = 3.

This structure can also be represented geometrically by extending
the geometric representation of linear contour from Section 3.3 to
combinatorial contour. CCs are plotted as points in a hypercube of Lcc
= (L2 − L)/2 dimensions, bounded by 1 and −1. The locations of the
13 possible CCs of morph length L = 3 are illustrated in Example 15,
forming an easily visible symmetric subset. Non-marked points at
intersections of grid lines are the impossible CCs. The space of possible
CCs is thus irregular—points have neighbors in different locations and
at different distances away. Under this representation, those holes
would be occupied by LCs if we considered this to also be a plot of
LC-space.

EXAMPLE 13: CURVES OF THE NUMBER OF LCS (VECTORS)
AND NUMBER OF CCS

1030

1027

1024

1021

1018

1015

1012

109

106

103

NUMBER OF DESCRIPORS

AND POSSIBLE CCS

RATIO OF POSSIBLE CCS

TO NUMBER OF DESCRIPTORS

L=3 L=4 L=5 L=6 L=7 L=8 L=9 L=10 L=11 L=12

100

10−2

10−4

10−6

10−8

10−10

10−12

10−14

10−16

10−28

10−20

10−22

L=3 L=4 L=5 L=6 L=7 L=8 L=9 L=10 L=11 L=12



EXAMPLE 14: ENUMERATION ALONG THE NUMBER LINE FOR CCS L = 3 THROUGH 7, ILLUSTRATING HOLES IN CC-SPACE.
COLOR INDICATES THE DENSITY OF CONTOURS AT EACH POINT. COUNTS ARE NORMALIZED SEPARATELY FOR EACH ROW

L = 7

L = 6

L = 5

L = 4

L = 3

10−2

10−3

10−4

CONTOUR
DENSITY
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4.3 DISTANCE IN CC-SPACE

The OLD is trivially extended to measure distance in CC-space: the
number of equal entries in the two CC vectors divided by the CC vector
length (Polansky’s OCD [1981, 1987, 1996] or Marvin and Laprade’s
CSIM [1987]). Unlike LC-space under OLD, CC-space is not highly
structured and symmetric under OCD due to holes (impossible CCs).

Example 16 shows partition plots for CC-space L = 3, each plot repre-
senting distance from a given source CC to every other CC in the space.
CC-space, however, is not as easily translated as LC-space, as shown by
the histograms, which count the total number of CCs at each OCD dis-
tance. CCs do not fully populate points in LC-space, so changes in orien-
tation—with different origins—affect distance distributions, and conse-
quently the shape of the space. Importantly, unlike LC-space, CC-space
components (and partitions) are not permutations of one another (nor
of a single normal partition) because CC-space is not closed under the
transform Tv. Tv maps some possible CCs to impossible CCs, and some
impossible CCs to possible CCs. This makes navigation of CC-space,
whether compositionally or analytically, complicated, because moving by
a given distance from a source CC usually arrives at an impossible CC.

EXAMPLE 15: GEOMETRIC INTERPRETATION OF THIRTEEN TERNARY CCS L = 3
PLOTTED ON THE CUBE, SHOWING HOLES IN THE SPACE (IMPOSSIBLE CCS).

MORPH LENGTH L = 3, LCC = 3. LLC = 3 AS WELL, BUT IN THIS CASE

REPRESENTING MORPHS OF L = 4. THE ORIGIN [0, 0, 0]CC IS IN THE

CENTER OF THE CUBE. POSSIBLE CCS ARE MARKED WITH DOTS. HOLES

(IMPOSSIBLE CCS) ARE UNMARKED INTERSECTIONS OF GRID LINES

0

0

0
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−1

−1

1

1

1



OCD = ALL OCD = 1/3 OCD = 2/3 OCD = 1 HISTOGRAM

EXAMPLE 16: GEOMETRIC REPRESENTATION OF OCD DISTANCE IN CC-SPACE, L = 3. COLOR INDICATES OCD DISTANCE FROM THE

SOURCE CC, LOCATED AT INTERSECTION OF ALL THE LINES. SINCE CCS DO NOT FULLY POPULATE THE SPACE, THERE ARE ONLY 3
CC COMPONENTS (PARTITIONS THAT ARE UNIQUE UP TO ROTATION) WHEREAS LC-SPACE OF THE SAME LENGTH HAS 4 COMPO-

NENTS (EXAMPLE 8). IT IS IMPOSSIBLE TO CONSTRUCT A CC IN L = 3 THAT HAS ONLY ONE NON-ZERO ELEMENT, SO THERE IS
NO CC COMPONENT FOR OFF ONE AXIS. HISTOGRAMS FOR EACH COMPONENT COUNT THE NUMBER OF CONTOURS AT EACH OCD

DISTANCE. MOVING FROM ONE SOURCE TO ANOTHER AFFECTS THE HISTOGRAM DISTRIBUTION AND SHAPE OF THE SPACE

(A) OCD FROM [0, 0, 0]CC

(ON ALL AXES)
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(B) OCD FROM [0, 1, 1]CC
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(C) OCD FROM [1, 1, 1]CC

(OFF THREE AXES)
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4.4 MATRIX REPRESENTATIONS OF CC-SPACE

A dissimilarity matrix (DSM) can be used to visualize OCD distance
for CCs of lengths greater than L = 3. As with linear contour,
combinatorial contour DSMs represent OCD distances between all
pairwise combinations of CCs on a 2-dimensional grid. Example 17
shows DSMs for CC-space L = 3, 4, 5, revealing that the self-similar
structure observed with linear contour is less clear for combinatorial
contour. The linear contour DSMs appeared as shifted and scaled
versions of one another. The self-similar structure of combinatorial
contour is more complex.

The reason for this structure can be illustrated by conceiving of CC-
space DSM as the result of removing the impossible CCs from the LC-
space DSM and squeezing the remaining possible CCs back together.
A CC impossibility mask is a binary matrix used to represent the loca-
tions of possible CCs by masking out impossible CCs from the space of
contour descriptors (LC-space), as shown in Example 18.

To summarize:

1. The set of possible CCs of length Lcc is a strictly proper subset
of LCs whose length Llc = Lcc. The CC and LC representations,
however, correspond to morphs of different lengths, or Ls.

2. Distances (Hamming) between CCs are the same as those
between LCs of the same lengths.

EXAMPLE 17: DISSIMILARITY MATRICES CC-SPACE L = 3, 4, 5.
CONTOURS ARE ENUMERATED ALONG EACH AXIS BY COMBINATORIAL INDEX,
AND COLOR AT EACH POINT INDICATES OCD DISTANCE BETWEEN THE TWO

CCS INDEXED ON EITHER AXIS. IN LC-SPACE, EACH PARTITION (COLUMN)
IS A PERMUTATION OF ANY OTHER. THIS IS NOT THE CASE FOR CC-SPACE

OCD
1.0

0.8

0.6

0.4

0.2

0.0

CC DSM L = 3 CC DSM L = 5 CC DSM L = 5
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3. The structure of CC-space is inherited from LC-space but with
an impossibility mask, creating holes. These holes are determined
by 1) allowable length as L varies and 2) allowable transitivity
(possibility) for a given length L.

4. Very few LC-spaces contain possible CCs because CCs only

exist for lengths equal to binomial coefficients of the form (L2 ).
There are many more LC-spaces than CC-spaces.

THE STRUCTURE OF CC-SPACE IS THE RESULT OF A CC IMPOSSIBILITY

MASK APPLIED TO LC-SPACE OF THE SAME CONTOUR VECTOR LENGTH

EXAMPLE 18A: THE CC IMPOSSIBILITY MASK (L = 3),
DISTINGUISHING POSSIBLE (BLACK) FROM IMPOSSIBLE (WHITE) CCS

EXAMPLE 18B: CC MASK APPLIED TO THE LC-SPACE DSM (L = 4)
TO PRODUCE THE CC-SPACE DSM (L = 3)BY

FILTERING OUT IMPOSSIBLE CONTOURS
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5 THE STRUCTURE OF CC-SPACE: MAGNITUDE AND CONTOUR

How may CC-space be visualized on its own rather than as a “swiss-
cheesy” subset of linear contour, and how do conventional ideas of
distance operate in that space? Because Lcc grows much faster than L,
visualization in Euclidean coordinates quickly becomes unwieldy. For
example, for morph length L = 5, LC length Llc = 4 and CC length
Lcc = 10. A 10-dimensional space is required to represent the 541
possible CCs by ternary descriptor vectors. More interestingly, those
541 possible vectors are embedded in a space of 59,049 ternary contour
descriptors (58,508 or 99% of which are impossible).

Normal Form Contour CC-Index LC-Index M-Index

[2, 1, 0]m [1, 1, 1]cc 0 0 21

[1, 1, 0]m [1, 1, 0]cc 1 1 9

[2, 0, 1]m [1, 1, −1]cc 2 2 19

[1, 0, 1]m [1, 0, −1]cc 3 5 10

[1, 0, 2]m [1, −1, −1]cc 4 8 11

[1, 1, 0]m [0, 1, 1]cc 5 9 12

[0, 0, 0]m [0, 0, 0]cc 6 13 0

[0, 0, 1]m [0, −1, −1]cc 7 17 1

[1, 2, 0]m [−1, 1, 1]cc 8 18 15

[0, 1, 0]m [−1, 0, 1]cc 9 23 3

[0, 2, 1]m [−1, −1, 1]cc 10 24 7

[0, 1, 1]m [−1, −1, 0]cc 11 25 4

[0, 1, 2]m [−1, −1, −1]cc 12 26 5

EXAMPLE 19: INDEXED REPRESENTATIONS OF POSSIBLE CCS: LC-INDEX,
CC-INDEX, M-INDEX. LC-INDEX INTERPRETS THE CC VECTOR AS A TERNARY

NUMBER WITH ELEMENTS (1, 0, −1); CC-INDEX INTERPRETS THE CC

VECTOR AS A TERNARY NUMBER AND SORTS THEM FROM 0 TO 12; M-INDEX

INTERPRETS THE MORPH NORMAL FORM VECTOR AS A TERNARY NUMBER

WITH ELEMENTS (2, 1, 0). FOR EXAMPLE, [2, 1, 0]M IS INTERPRETED AS

(2 × 32) + (1 × 3)
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5.1 ENUMERATION

Enumeration of morph elements in normal form (Marvin and Laprade
1987), or ranking, creates a simple ordering of possible CCs. Example
19 lists the thirteen possible CCs of L = Lcc = 3 in normal form notation.

Normal form rankings of ternary CCs (whose possible values range
from 0 to L − 1) contain no empty ranks. [1, 3, 5]m and [2, 3, 21]m
both become [−1, −1, −1]cc and [0, 1, 2]r (r denotes normal form).
Rankings [0, 2, 5] and [1, 2, 3] are not in normal form—the first skips
a rank, the second is not normalized. Normal form enumeration lists
only and all possible CCs as morphs (that is, vectors which describe
both direction and magnitude). All normal form rankings of length L
describe possible CCs of length Lcc.12

5.2 FULL RANK AND N-ARY CONTOUR

An important further distinction between possible CCs is between
those that do not compress ranking values, called full rank, and those
that do compress ranking values. In the former (full rank), the
magnitudes of all inter-element differences (or deltas) between pairs of
morph normal form rankings are described without compression.

For example, consider the CC [−1, −1, −1]cc (the first is less than the
second, the first is less than the third, the second is less than the third
—ascending line) with morph normal form [0, 1, 2]m. If CC elements
are interpreted to express magnitude as well as direction (in this case:
−1, +1, and 0), then the CC does not accurately express all the dif-
ferent inter-element deltas in the normal form morph.13 The difference
between the first and third normal form morph elements—rankings 0
and 2—is two ranks, not one, but a value of 2 is unavailable in the
ternary representation. The CC is not full rank. The CC [−1, 0, 1]cc
however, with morph normal form [0, 1, 0]m, is full rank because all
inter-element deltas accurately represent the magnitude of rank differ-
ences as well as direction (in this case, no inter-element deltas are
greater than 1).

CCs that are not full rank (in ternary) can be represented as full rank
if higher degrees of contour magnitude are used, in what is called n-
ary contour (Polansky and Bassein 1992; Morris14). For example, [−1,
−1, −1]cc can be represented without compressing rank values in
quinary form, using absolute values of contour element magnitudes
greater than 1: [−1, −2, −1]cc. This quinary representation is full rank,
with large enough deltas—sufficient resolution—to accurately describe
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inter-element magnitudinal ranking differences. In other words, the
higher the possible CC values (n, or magnitude) the greater the
resolution of the contour descriptor.

Formally, we define the resolution of a contour, denoted by n or a
descriptive term (ternary, quinary, etc.), as the number of possible
inter-element values used to represent the morph as a contour. In this
paper, we assume all contours are symmetric—an equal number of
positive and negative difference values in addition to equality—thus n
is the absolute value of the largest element (either positive or negative)
in the contour vector. The number of difference values is 2n + 1. For
example, quinary (n = 2) has 2 × 2 + 1 possible relationships (−2, −1,
0, 1, 2). In this formulation, contours have both length (L) and
resolution (n).15,16 For ternary contours (using only values −1, 0, and
1) n = 1. Intuitively, ternary contour is the simplest representation/
reduction of magnitude, compressing all inter-element differences to a
single degree of difference.17 

Rank, a property of morphs, has been used to mean the number of
unique rank values in morph normal form, or the number of unique
values in a morph, which is equal to the maximum rank value in
normal form, assuming ternary contour (n = 1). Extending rank to n-
ary contour, n-ary rank is the maximum rank value in n-ary normal
form (also called n-ary ranking), where n-ary normal form is an
extension of normal form to allow skips of magnitude n.

The concept of full rank is an extension of Polansky and Bassein’s
(1992) impossibility from ternary contour (n = 1) to magnitude, or n-
ary contour (n > 1). Possible n-ary contours must satisfy not only the
transitive property of inequality but the additive property as well.
Formally, a contour is full rank if the additive property holds for the
system of distance relationships between any three morph elements.18

Full rank is a property of contours, not of morphs. Full rank indicates
whether a contour has sufficient magnitudinal delta to describe the
morph normal form without compressing two different rank
magnitude deltas into the same magnitudinal category.

Contours may be full rank (or not) for any n. Of the thirteen ternary
CCs for L = 3, seven are full rank, six are not (the difference of one is
accounted for by the all-equal “straight line” contour, trivially of full
rank). The contours that are not full rank in ternary, however, have full
rank representations in higher (more resolute) n-ary contours. Example
20 lists the thirteen ternary contours as well as their full rank represen-
tations. Contours highlighted in gray are not full rank in ternary,
requiring magnitudes of n = 2, or quinary contour to be full rank.
Contours not highlighted are full rank in ternary (n = 1).
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Perceptually, n-ary contour provides increasing degrees of magnitude
resolution, representing shades of perceptual relationships—for example,
a quinary contour might represent “a lot less than,” “a little less than,”
“equal to,” “a little greater than,” “a lot greater than.” Formally,
magnitude (up to ranking) is implicit in the system of directional
relationships of a ternary CC. Ternary CCs do not fully express the
information present in the representation, and this truncation of values
to abs() ≤ 1 is the cause of holes in ternary CC-space and the reason
why CCs do not form a closed subspace of LC-space. By using full
rank n-ary CC representations, CCs do form a closed subspace of LC-
space. The distinction between full rank and non-full rank contours is
an important step in what follows, the formulation of a “well-behaved”
structure of morphological space emanating solely from contour.

Normal Form CC (n = 1) CC (n = 2) Rank

[2, 1, 0]m [1, 1, 1]cc [1, 2, 1]cc 2

[1, 1, 0]m [1, 1, 0]cc 1

[2, 0, 1]m [1, 1, −1]cc [2, 1, −1]cc 2

[1, 0, 1]m [1, 0, −1]cc 1

[1, 0, 2]m [1, −1, −1]cc [1, −1, −2]cc 2

[1, 1, 0]m [0, 1, 1]cc 1

[0, 0, 0]m [0, 0, 0]cc 0

[0, 0, 1]m [0, −1, −1]cc 1

[1, 2, 0]m [−1, 1, 1]cc [−1, 1, 2]cc 2

[0, 1, 0]m [−1, 0, 1]cc 1

[0, 2, 1]m [−1, −1, 1]cc [−2, −1, 1]cc 2

[0, 1, 1]m [−1, −1, 0]cc 1

[0, 1, 2]m [−1, −1, −1]cc [−1, −2, −1]cc 2

EXAMPLE 20: FULL RANK AND NON-FULL RANK TERNARY CONTOURS.
NOTE THAT N = 2 IS THE MINIMUM NECESSARY TO REPRESENT FULL RANK

TERNARY CONTOURS OF L = 3. N´, THE MINIMUM NEEDED FOR L-LENGTH

CONTOURS OF MAGNITUDE N, IS A FUNCTION OF N AND L: N´ = (L−1)(N).
FOR N-ARY CONTOURS OF L = 3, N = 1 (TERNARY), N´ = 2 (QUINARY).

SIMILARLY, FOR QUINARY CONTOURS, L = 3, N = 2, N´ = 4 (NONARY), ETC.
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GEOMETRIC ILLUSTRATION OF THE FULL RANK PLANE

REDUCED TO TERNARY CONTOUR

EXAMPLE 21A: FULL RANK PLANE IN N-ARY CONTOUR SPACE

(PLOTTED UP TO N = 3): THE FULL RANK CCS LIE ON A PLANE ROTATED

DIAGONALLY IN N-ARY CONTOUR SPACE

EXAMPLE 21B: INTERSECTION OF THE TERNARY CUBE AND THE FULL RANK

PLANE: CCS THAT ARE FULL RANK IN TERNARY LIE AT THE INTERSECTION

THE PLANE AND CUBE (PLOTTED IN BLACK)
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GEOMETRIC ILLUSTRATION OF THE FULL RANK PLANE

REDUCED TO TERNARY CONTOUR (CONT.)

EXAMPLE 21C: CCS THAT ARE NOT FULL RANK IN TERNARY ARE MAPPED

ONTO THE TERNARY CUBE BY RANK REDUCTION. IN L = 3, THESE CCS

(PLOTTED IN BLACK) BECOME THE AXES OF THE TERNARY CUBE

(PLOTTED IN WHITE)

EXAMPLE 21D: RANK REDUCTION FROM FULL RANK TO TERNARY CONTOUR,
VISUALIZED AS A FOLDING OF THE CC PLANE TO FIT INTO THE TERNARY CUBE

1
0−1−1

0
1

−1

0

1
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5.3 THE GEOMETRY OF FULL RANK

The concept of full rank is fundamental to the structure of CC-space,
illustrated by plotting full rank contours in n-ary combinatorial contour
space (CCn-space), an extensions of CC-space to magnitudes greater
than 1. n-ary CCs are represented as points in a hypercube of Lcc
dimensions bounded by n and −n. For CCs where Lcc = L = 3, n-ary
contour space is represented as a cube with axes extending from −n to
+n. Example 21 plots full rank CCs in n-ary CC-space L = 3.

Full rank contours of morph length L = 3 lie on a plane P that is
rotated diagonally within the cube of n-ary contour space (Example
21a). This plane forms a true subspace of n-ary contour space because
it is closed under addition and multiplication. The plane describes only
and all possible full rank CCs. Because ternary CCs do not contain
elements of abs() > 1, they are restricted to the unit cube bounded by
±1. Full rank ternary CCs are located at the intersection of the full rank
plane and the unit cube, lying on both the unit cube and the full rank
plane (Example 21b).

CCs that are not full rank in ternary form (n = 1) have full rank
representations for n > 1. Although the ternary forms do not lie on the
full rank plane, the corresponding full rank representations (of greater
resolution) do. Full rank CCs are mapped to ternary CCs by a rank-
reduction transform Rn→1 which maps from n-ary contour space to
ternary contour space by limiting the contour elements to values of
magnitude 1, or abs() ≤ 1 (Example 21c).

Ternary contour can be thought of as the result of a rank reduction
transform Rn→1 applied to the full rank plane: Rn→1(P) = CC1-space.
In other words, the set of full rank CCs are a kind of ur-set of
contours, from which all other, lower rank n contours can be derived
—in this case, the 13 possible ternary CCs. The full rank plane
represents all ternary CCs, but represents some in their higher
resolution full rank form, while others, already full rank, are
represented directly. The 13 possible ternary CCs are in some sense the
simplest forms (excluding the three LCs of length Llc = 2), lying at the
center of the plane of all possible CCs.

Geometrically, this transform of the full rank plane P into ternary
contour space is a folding and stretching of the plane to fit into the
unit cube (Example 21d). CCs of rank n > 1 are pushed onto to the
unit cube by limiting contour elements to abs() ≤ 1. The resulting
surface still sits diagonally in CC-space. This transform of the diagonal
plane accounts for the structure and location of the possible CCs in
CC-space.
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The transform R, illustrated for L = 3 in Example 22, can be
generalized to any higher value of n, creating a continuum from lower
resolution n-ary contours in which ternary is the most compressed to
full rank, which is not compressed at all. All CCs, for any L or n exist
on this continuum. For example, as n increases, the monotonically
ascending ternary CC [−1, −1, −1]cc eventually becomes every possible
version of a monotonically ascending line, all of which are folds from
higher n into ternary, or n = 3.

For CCs of morph length L > 3, full rank CCs form a lower
dimensional subspace (of dimension L − 1) embedded within n-ary
contour space (of dimension Lcc). For L = 3, the full rank subspace is a
plane in 3-dimensional n-ary contour space. For morph length L = 4,
full rank contours form a 3-dimensional subspace of a 6-dimensional n-
ary contour space. As with L = 3, for L > 3 the subspace is a vector
space that consists entirely and only of full rank CCs.

All possible full rank CCs span an entire lower dimensional vector
subspace in the space of all CC descriptors. The set of all possible CCs
of any L and any n is the same as the set of all full rank CCs for any L.

Because the subspace is a vector space, we can construct a new
coordinate system for it, enabling us to work directly in the space of
full rank contours and investigate the structure of the space comprising
all and only possible CCs. In the next section, we construct a new
space, combinatorial basis space (henceforth: basis space), making use of
this change of coordinate systems from n-ary contour space to the
subspace of full rank CCs.

EXAMPLE 22: RANK REDUCTION FROM FULL RANK TO SUCCESSIVE DEGREES

OF N-ARY CONTOUR (PLOTTED FROM TWO DIFFERENT PERSPECTIVES)
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6 BASIS SPACE

Basis space19 is a representation CC-space that comprises all and only
full rank CCs. Through a change of coordinate systems, full rank CCs
are represented by a set of basis vectors which combine arithmetically
to form all possible full rank CCs. This representation separates
possible from impossible CCs, describing possible CCs in minimal
dimensionality and providing a visualization of contour relationships.

6.1 CHANGE OF BASIS

Basis space provides a set of basis vectors B = {b1, b2, . . ., bL−1} that
can uniquely express any full rank CC as the weighted sum of basis
vectors with scalars a1, a2, . . ., aL−1. These vectors form the axes of the
basis-space coordinate system, in which CCs are represented by basis
vector scalars instead of by the (n-ary) elements of CC vectors
themselves. CC vectors are reconstructed by recombining basis vectors
as weighted sums according to scalars:

[a1, a2, . . ., aL–1]b = a1·b1 + a2·b2 + . . . + aL−1·bL−1

Basis space significantly reduces dimensionality, requiring only L − 1
basis vectors. CCs are represented by L − 1 scalars rather than Lcc CC
elements. More importantly: basis space represents every full rank CC,
and all contours represented in basis space are full rank CCs. CCs that
are not full rank cannot be expressed as weighted sums of basis vectors
and as such have no representation in basis space. Basis space
eliminates non-full rank CCs.20 

In L = 3, basis space is the full rank plane. For L > 3, basis space is
the L − 1 dimensional subspace of full rank CCs. Interpreted
geometrically, basis vectors are the axes of these full rank subspaces.
Any full rank CC in the subspace can be found by movement along
basis vector axes, and any movement along an axis will remain in the
subspace. The scalars of the weighted sums correspond to the direction
and magnitude of movement along basis vectors in the subspace.21

Example 23 illustrates the change of basis from CC-space to basis space
for L = 3. Example 24 plots basis space L = 3 with representative morphs
drawn, showing the correspondence between basis-space coordinates and
morph features. Note that larger morphs are further from the origin, and
morphs gradually change shape as location rotates around the origin.
(The method of construction for basis vectors is described below).
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ILLUSTRATION 1: Conversion from basis space [1, 1]b to ternary cc 
[1, 1, 0]cc:

[1, 1]b = 1⋅b 1+1⋅b 2

= 1⋅[−1, 0, 1 ]+1⋅[0, −1,−1]
=[−1, −1, 0 ]cc

EXAMPLE 23: CHANGE OF BASIS FROM CC-SPACE TO BASIS SPACE IN L = 3.
WITHIN CC-SPACE, THE FULL RANK CCS FORM A DIAGONAL PLANE. BASIS

SPACE PROVIDES TWO VECTORS B1, B2 THAT ARE CAPABLE OF EXPRESSING

ANY CC OF LCC = 3 AS A WEIGHTED SUM. INTERPRETED GEOMETRICALLY,
ANY FULL RANK CC CAN BE FOUND BY MOVEMENT ALONG THESE TWO

VECTORS AND ANY MOVEMENT ALONG THESE TWO VECTORS WILL REMAIN

ON THE PLANE (LEFT). THESE VECTORS FORM THE AXES OF A NEW

COORDINATE SYSTEM, BASIS SPACE, IN WHICH FULL RANK CCS ARE

REPRESENTED BY COORDINATES CORRESPONDING TO THE DIRECTION AND

MAGNITUDE OF MOVEMENT ALONG BASIS VECTORS (RIGHT).

EXAMPLE 24: BASIS SPACE L = 3
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6.2 CONSTRUCTING BASIS VECTORS

Basis vectors encode the logic of combinatorial contour—changing
one value in a CC affects the system of relations between all elements.
Basis vectors encode this system of transitivity by definition, since the
space they represent cannot contain intransitive CCs. Each vector
describes how each member of the system of combinatorial relations is
affected when one morph value is changed. For example, raising the
second element of a length L = 3 morph changes the delta between
first and seconds elements as well as the delta between the second and
third elements, but does not affect the delta between the first and third
elements. This system is encoded by the basis vector b1 = [−1, 0 , 1].

While basis space requires only L − 1 basis vectors, the basis vectors
are themselves CCs of length Lcc. These contours are, in some sense,
“primitives” or fundamental CCs of the space that combine in various
ways to construct all possible full rank CCs. The basis-space axes [1,
0]b and [0, 1]b represent the CC vectors themselves: [−1, 0, 1]cc and
[0, −1, −1]cc.

Basis vectors may be formed from the CCs of morph-space axes [1,
0, . . ., 0], [0, 1, . . ., 0], [0, 0, . . ., 1] which correspond to these
primitive morphs—morphs in which only one element is raised at a
time. As such, basis space can be thought of as the space of first order
combinatorial differences on morph space. While morph space also
separates possible from impossible CCs (unlike CC-space), basis space
transposes this structure of morph space into combinatorial contours
that reveal the structure of possible CCs within the space of all CC
contour descriptors (the latter not included in basis space). Example
25 shows the construction of basis vectors for any L.

The choice of basis vectors is not unique. Basis space requires L − 1
vectors (the minimal number required to span the entire space), which
can be derived from any subset of L − 1 morph-space axes. Different
choices of vectors reorient basis space through rotation. By conven-
tion, we use morph-space primitives that correspond to raising the
second, third, fourth, . . . elements, discarding the first.

Intuitively, the dimension of basis space is one less than that of
morph space because basis space represents the first order signed
difference of morph space. Only the differences between morph
elements are retained, not the absolute offset. As such, basis space is
isomorphic to morph space under transpositional invariance, or the
space of all “zeroed” morphs,22 and is a generalization of it through
the choice of basis vectors.



34 Perspectives of New Music

6.3 TERNARY CONTOURS IN BASIS SPACE

As shown above, some ternary contours are full rank, others are not.
Ternary contours that are not full rank are represented through their
higher (quinary), full rank counterparts. Finding these lower rank
representations, such as ternary, requires an additional rank-reduction
transform to the desired resolution Rn→1. Converting from lower rank
contours to basis space requires first integrating to a full rank contour
before solving for basis coordinates.

ILLUSTRATION 2: Conversion from basis space [2, 1]b to ternary CC
[−1, −1, 1]cc:

[2, 1 ]b = Rn → 1 (2⋅b 1+1⋅b 2)
= Rn → 1 (2⋅[− 1, 0, 1]+1⋅[0, − 1, − 1 ])
= Rn → 1 ([− 2, − 1, 1]cc )
= [− 1, − 1, 1 ]cc

ILLUSTRATION 3: Conversion from ternary CC [1, 1, 1]cc to basis
space [−1, −2]b: First integrate [1, 1, 1]cc to [1, 2, 1]cc then solve for
basis coordinates a1, a2:

[1, 2, 1]cc = a1⋅b 1+a 2⋅b 2

= a1⋅[− 1, 0, 1 ]+a 2⋅[0, − 1, − 1]
= [− 1, − 2 ]b

L Basis Vectors [b1, . . ., bL−1]

L = 3 b1 = [1, 0, −1]
b2 = [0, 1, 1]

L = 4 b1 = [1, 0, 0, −1, −1, 0]
b3 = [0, 1, 0, 1, 0, −1]
b4 = [0, 0, 1, 0, 1, 1]

L = 5 b1 = [1, 0, 0, 0, −1, −1, −1, 0, 0, 0]
b3 = [0, 1, 0, 0, 1, 0, 0, −1, −1, 0]
b4 = [0, 0, 1, 0, 0, 1, 0, 1, 0, −1]
b5 = [0, 0, 0, 1, 0, 0, 1, 0, 1]

L bn = [ai,j for i in (1, . . ., L) and j in (i, . . ., L)]

where ai,j ={ 1 if i =n +1 ;
−1 if j =n +1 ;
0 otherwise .

EXAMPLE 25: CONSTRUCTION OF BASIS-SPACE VECTORS
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BASIS SPACE L = 3

EXAMPLE 26A: TERNARY CC REGIONS IN BASIS SPACE.
CONTOURS WITHIN THE SAME COLORED REGION ARE EQUIVALENT UNDER

TERNARY CONTOUR—THEY HAVE THE SAME TERNARY CC REPRESENTATION.

EXAMPLE 26B: TERNARY NORMAL FORM CCS HIGHLIGHTED IN GRAY.
THE CHART SHOWS THAT THE SIX NONFULL RANK TERNARY CCS

(IN NORMAL FORM): [2, 1, 0]M, [2, 0, 1]M, [1, 0, 2]M, AND INVERSIONS

[1, 2, 0]M, [0, 2, 1]M, [0, 1, 2]M, EXTENDING FROM THE CUBE’S VERTICES,
ARE ALL ADJACENT TO SOME FULLRANK TERNARY CC. NON-FULL RANK CCS

ARE CHARACTERIZED BY HAVING THREE DISTINCT NORMAL FORM VALUES.
FULL-RANK CCS HAVE TWO EQUAL VALUES.

THIS DISTINCTION, BY EXTENSION, HOLDS FOR ANY N
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6.4 THE STRUCTURE OF BASIS SPACE

Basis space is unbounded, extending infinitely in all dimensions, and
comprises all full rank CCs. Rank reduction defines equivalence classes
on the space of all full rank CCs, subdividing it into a finite number of
equivalence classes, each of which represent an infinite set of CCs.
Visualizing these equivalence relations in basis space—that is,
operating on full rank CC representations rather than truncated
ternary representations—allows us to investigate the structure that
exists before reduction.

Example 26a shows basis space divided into 13 regions, or equiva-
lence classes, of ternary contour. Boundaries between equivalence
classes are organized radially, characterized by angle about the center.

EXAMPLE 27: STELLATED FORM IN BASIS SPACE, L = 3, INCREASING N.
SINCE EACH N INCLUDES ALL CONTOURS OF LOWER N, COLOR INDICATES

BOUNDARIES BETWEEN SUCCESSIVELY INCREASING INTEGER VALUES OF N
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As with morphs, normal form23 is used to represent contour equiva-
lence classes, and basis space uses a corresponding definition of normal
form—smallest integer scalars, but allowing negative values as well.
The basis normal forms are the members of each equivalence class that
are closest to the origin. In Example 26b, the 13 normal form ternary
CCs are highlighted in gray. As scalars increase, n-ary contours up to
any length (and any value for n) can be plotted in basis space (Example
27). The concept and visualization of n-ary contour is thus an
immediate result of representation in basis space, revealing CC-space’s
fundamental structure as n increases (for some L). In other words,
while contour equivalence class corresponds to angle, the degree of
resolution—n-ary contour—is represented by radii lengths (conven-
tional Euclidean distance from the origin).

6.5 STELLATED FORM AND THE NUMBER OF N-ARY CCS

The number of possible n-ary contours can be expressed by the
formula:

∑
h =1

L

nh − 1 h! S (L , h )

where L is morph length, n is contour resolution, and S(L, h) is a
Stirling number of the second kind. Inserting the nh−1 term generalizes,
to any n, Polansky and Bassein’s (1992) formula for the number of
possible ternary contours for some L.24 Intuitively, the general form of
the summation shows that each (n − 1)-ary contour is cumulatively
included in the number of contours for n (with the same L). As an
example, for n = 2 (quinary) and L = 3 there are 37 contours, 13 of
which are the ternary contours (with rank 1 or 2). Example 28 lists the
number of n-ary contours for increasing values of L and n. (See
Appendix A for an enumeration of n-ary CCs, L = 3).

Basis space also raises the question of cardinality: how many
contours are contained in a given equivalence class? The generalized
answer to this question helps clarify the significance and/or likelihood
of observed contours with respect to the set of possible contours.
Typological categorizations of observed melodies such as those of
Huron (1995) are enriched by knowing the expected-against-observed
distribution. Cardinality can be visualized as the area of the colored
regions in Example 26a.
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7 THE DIMENSIONS OF CONTOUR: ANGLE AND MAGNITUDE

Contours in basis space are organized radially, characterized by angle
and magnitude from the origin (0, 0). Representing contours as vectors
from the origin, the shape of the contour corresponds to the vector’s
angle (Example 29a) and the rank of the contour corresponds to
vector’s magnitude, or distance from the origin (Example 29b).25 

Note that basis space appears squashed in quadrants where x and y
have opposite signs because it is a transposition space. Length L = 3
morphs are represented in L − 1 dimensions by transposing, or zeroing,
such that one morph element is 0, effectively representing a third
orthogonal dimension. This corresponds to the stipulation that morph
normal form be transposed to have zero as a minimum. For L = 3, basis
coordinates with opposite signs combine to represent the third morph
element. This form extends to and becomes more complex in higher
dimensions.

Because the dimensions of contour correspond to angle and
magnitude, polar coordinates are a more direct parameterization.
Example 30 shows basis space for morph length L = 3 plotted on a
polar coordinate system. Contours are represented with coordinates (r,
θ) where θ is the angle measured from the normal vector [1, 0] to
basis-coordinates, and r is the contour rank or magnitude of the largest
contour element. By normalizing magnitude to 1/r we invert and
bound the space to the radius r = 1, placing the six rank-1 contours
(for L = 3, the smallest possible CCs) on the outer boundary. In this
representation, contours increase in size, or rank, towards the origin.

n = 1 n = 2 n = 3 n = 4

L = 3 13 37 73 121

L = 4 75 365 1,015 2, 169

L = 5 541 4,501 17,641 48,601

L = 6 4,682 66,604 367,926 1,306,808

EXAMPLE 28: NUMBER OF N-ARY CONTOURS FOR INCREASING L AND N.
NUMBER OF CONTOURS INCREASES EXPONENTIALLY WITH N,

BECAUSE INCREASING N ADDS HIGHER ORDER TERMS TO THE SUMMATION,
AND BY BINOMIAL COEFFICIENTS WITH L
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THE FEATURES OF CONTOUR SHAPE AND SIZE CORRESPOND TO THE

DIMENSIONS OF ANGLE AND MAGNITUDE IN BASIS SPACE

EXAMPLE 29A: CONTOURS AS VECTORS FROM THE ORIGIN

EXAMPLE 29B: CONCENTRIC REGIONS OF INCREASING RANK, 1–5

ANGLE

MAGNITUDE
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EXAMPLE 30: BASIS SPACE L = 3 REPRESENTED IN POLAR COORDINATES

EXAMPLE 31: N-ARY CONTOUR L = 3 REPRESENTED IN POLAR COORDINATES.
NOTE THAT THE SYMMETRY VISUALIZED EARLIER IN THE STELLATED FORM,

AND ALSO IN EXAMPLE 20 AND EXAMPLE 24, IS CLEARLY SEEN IN THIS

REPRESENTATION
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In basis space, as n increases (for some fixed L), the space expands
outward from the center. Polar coordinates map that expansion into
the circle, which becomes more densely populated as n increases.
Consequently, the number of unique angular differences between CCs
increases, as does the resolution or the grain of the distances, because
increasing n adds new possible integer values for basis-space
coordinates. Converting from basis to polar coordinates, angle
measures the ratio between basis coordinates, as expressed by the
arctangent function. For example, if L = 3, n = 1, the only possible
ratios are 1:0, 1:1, 2:1 (and their reciprocals). If n = 2, with possible
integer rank values {1, . . ., 5}, angular distances are generated by all
possible ratios of those integers that satisfy n-ary normal form (and
their reciprocals). Increasing n thus increases the number of possible
fractional values (angular distances), eventually including all the
rationals (and arbitrarily small distances). Example 31 plots n-ary
contour morph length L = 3 for increasing values of n.

7.1 DISTANCE IN BASIS SPACE

Contour theory has postulated a number of well-behaved distance
functions—metrics—to describe the structure of contour space. Different
metrics from the literature are tuned to different musical features,
organizing contour space into various types of equivalence classes.
Similarly, different spatial representations suggest different metrics.

Using basis coordinates, all CCs for any L, any n, have unique integer
coordinates in L − 1 dimensions (basis vector scalars, themselves CCs).
Ternary CCs occupy the central, smallest region in this space.26 Simple
Minkowski distance functions—metrics—on Euclidean spaces yield
inter-CC distances between any two points in the space, providing a
convenient measure which combines magnitudinal and contour differ-
ences. However, these basis-space metrics are indistinct from previously
formulated distance measures which measure either magnitudinal or
contour differences (or both). Additionally, standard distance functions
proposed for measuring differences between CCs of different length
(vectors of different dimensionality), such as Polansky’s (1996)
Unordered Combinatorial Direction metric (UCD), are, in general,
less resolute and less sensitive to variations in contour shape.

CC distance in basis space may be measured solely by angle.27 Equi-
angular CCs (for some L) are equivalent under reduction of n. As n
increases, so does the number of contour equivalence classes for the
“ur” ternary CC.
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For example, in Example 29, star vertices for ternary CCs increase in
resolution (number of CCs) as n increases radially from the origin.
Polansky’s (1987, 1996) distinction between OCD (Ordered Combina-
torial Direction) and OCM (Ordered Combinatorial Magnitude)
correspond to angle and magnitude. OCD measures angular distance
between two CCs, OCM measures magnitudinal distance. The
similarity between angle and OCD raises the question: how well do the
features of OCD and angular distance correspond?

For CCs of morph length L = 3, angle and OCD correspond closely,
as can be seen in Example 32, which plots OCD distance in polar
space. In L = 3, OCD is a monotonically increasing function of angle over
the semicircle in the positive direction from 0 to π and a monotonically
decreasing function of angle in the negative direction from 0 to −π
(due to inverse symmetry of CCs). In other words, if angle increases
then OCD increases or stays the same; if angle decreases then OCD
decreases or stays the same. The two measures always move in the
same direction. Angle, however, is more resolute than OCD (which for
contours L = 3 has only three possible non-zero distances (1/3, 2/3,
1). Equal OCD distances may often be further resolved by angle.

EXAMPLE 32: OCD DISTANCE IN POLAR SPACE. OCD IS MEASURED FROM

THE SOURCE CONTOUR [1, 2]B. IN L = 3, OCD DISTANCE AND ANGLE ARE

CORRELATED—OCD INCREASES WITH ANGLE. OCD DISTANCES TO OTHER

SOURCE CONTOURS ARE ROTATIONS OF THE SPACE

π/2

π/4

0

7π/4

3π/2

5π/4

π

3π/4
OCD = 0

OCD = 1/3

OCD = 2/3

OCD = 1



The Structure of Morphological Space 43

For higher L, angular distance between two contours (represented as
vectors) can be computed from the inner product, giving the cosine
similarity,28 a common measure between (same length) vectors in high-
dimensional spaces. Using the inner product, angle and OCD are no
longer monotonically related, diverging locally. However, a comparison
of DSM plots for OCD and cosine distance, which visualize distance in
higher dimensional spaces by enumerating contours along linear index,
shows significant correlation and identical symmetries (Example 33).
While cosine similarity and OCD combine angular distances of all dimen-
sions into one measure, angle can also be measured parametrically, or
separately for each dimension, giving a vector of angular measurements,
[θ0, . . ., θL−1]. Measured parametrically, angle and OCD correspond
more closely. Within certain regions of the space, OCD and angle
relate monotonically along each dimension. As angle increases or
decreases along one dimension at a time, OCD generally follows.

Cosine similarity is a general, well-understood distance function—
not a metric—that is often used in machine learning, optimization, and
statistics. OCD, on the other hand, is a more idiosyncratic distance
function—a metric—from music theory explicitly designed to measure
the difference between two equal length CCs. Cosine similarity has
useful analytic properties—such as being differentiable—that may be
fruitful in solving musical problems in contour theory. Further, it is
interesting to observe that conventional music-theoretic contour
metrics (CSIM, OCD) capture some of the same inherent dimensions
of contour space as cosine similarity.29 

EXAMPLE 33: DSM PLOTS OF ANGULAR DISTANCE (LEFT)
AND OCD DISTANCE (RIGHT), L = 5
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7.2 REPRESENTING CONTOURS OF DIFFERENT LENGTHS

Angle in basis space can be used to organize and compare CCs of
different lengths. Contours of all morph lengths L can be represented
in the same space, the unit half circle, by measuring angular distance to
an origin vector v, which takes the same general form for different contour
lengths. Example 34 shows contours of morph lengths L = 3 through 5
in the unit half circle, with an origin vector v = [1, 2, . . ., L – 1]b.

In the unit half circle, contours are organized according to their
angular distance from v. Nearby contours are similar in their overall
amount of deviation from v, but the deviation may be distributed
across different dimensions. We know that it “wiggles,” but not
necessarily which contour elements do the wiggling. These contours
tend to be similar in either large scale trajectory or overall amount of
wiggling, but may differ in terms of which contour elements are raised
or lowered. Example 35 shows DSM plots of angular distance on the
unit half circle, cosine distance, and OCD for comparison.

Not all contours are distinct in the unit half circle. Contours that
have the same coordinates (r, θ) are said to alias, and contours that
have the same angle θ but different magnitudes r (radius) function as
fixed points across r. Example 36 shows this for a region of the unit
half circle. The structure of the unit half circle is determined by the
choice of basis β = {b1, b2, . . ., bL−1} and origin vector v. Different basis
representations will orient the space differently, determining which
contour relationships constitute aliasing and fixed points.

EXAMPLE 34: UNIT HALF CIRCLE SHOWING CONTOURS L = 3, 4, 5
(OUTWARD FROM CENTER). ANGLE (θ) IS MEASURED TO THE ORIGIN

VECTOR V = [1, 2, . . ., L−1]B, WHICH IS [1, 2]B FOR L = 3,
[1, 2, 3]B FOR L = 4, AND [1, 2, 3, 4]B FOR L = 5
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EXAMPLE 35: DSM SHOWING ANGULAR DISTANCE ON THE UNIT HALF

CIRCLE (LEFT) ANGULAR DISTANCE BETWEEN CONTOURS (MIDDLE) AND

OCD (RIGHT), L = 4

EXAMPLE 36: REGION OF UNIT HALF CIRCLE WITH SELECTED MORPHS

DRAWN, ILLUSTRATING WHICH CONTOUR RELATIONSHIPS ALIAS (OCCUPY

THE SAME POINT) AND WHICH CONTOUR RELATIONSHIPS FUNCTION AS

FIXED POINTS (SAME ANGLE BUT DIFFERENT MAGNITUDE). BY

CONVENTION, WE USE β AND V = [1, 2, . . ., L−1]B TO MAXIMIZE

UNIQUENESS, CAUSING THE FEWEST CONTOURS TO ALIAS
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INCREASING L VERSUS INCREASING N

CONTOUR DENSITY IS REPRESENTED BY GRAYSCALE;
INCREASING EITHER L OR N FILLS IN THE UNIT HALF CIRCLE,

BUT IN DIFFERENT WAYS

EXAMPLE 37A: INCREASING L = 3 THROUGH 6, N = 1

EXAMPLE 37B: SHOWS INCREASING N = 1 THROUGH 4, L = 4
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7.3 INCREASING L VERSUS N: LENGTH AND MAGNITUDE

As n and L increase, contours populate basis space in different, but
not independent ways. This can be seen in Example 37, which shows
heatmap plots of contour density in the unit half circle. Increasing
morph length L fills in the unit half circle outward along the radii,
where as increasing resolution n fills in the unit circle towards the
center in the stellated form. Compositionally or analytically, one might
want to smoothly interpolate, in morphological space, between morphs
of different lengths and different magnitudes, by primarily considering
contour (and contour similarities). In the circular representation of
contour above, fixing either n or L limits the paths that can be taken in
moving between morphs, consequently defining specific sets of
“reachable” points. The angular/magnitude representation of all
contours (morphs), using basis coordinate vectors, allows for smooth
movement between contours (and morphs), and suggests several
intuitive distance relationships between all possible contours (any n,
and L), and, consequently, between all morphs.

8 HOW MANY MORPHS?

In many areas of musical scholarship, such as ethnomusicology,
composition, theory, and cognition, the idea of contour—non-
magnitudinal descriptions of “ups and downs”—has been used to
bring categorical order to the infinite set of (finite) musical shapes, or
what we call morphs—ordered lists of measurable or known values.
Contour, primary in our perception, is also an important and widely
used reductive technique to formally represent large phenomenological
classes of directionally-similar morphs by smaller sets of general
descriptions.

All morphs can be represented as contours, with concomitant
information reduction. As an extreme example, thirteen three-valued
(ternary) combinatorial contours (CCs) suffice to represent any morph
of length three, though in the coarsest possible reduction.

In this paper we are interested in the structure of what we call CC-
space (combinatorial contour space), and by extension, the structure of
musical morphological space. A melody can be seen as a multidimen-
sional array of pitches, durations, and other, perhaps less prominent,
parameters. Each dimension constitutes a morph, reducible in various
ways (as shown in this paper) to a more general contour description.

We have focused on several problems—old and new—in the study of
contour, particularly with regard to combinatorial contour. Of special
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interest is the problem that there are many more “impossible” contour
descriptors then there are “possible” ones, making the structure of the
space difficult to understand, much less visualize.

Using combinatorial basis vectors as axes for an multi-dimensional
space, we demonstrate a clear structure for the space of possible CCs
along with accompanying visualizations, suggesting various measures
of distance. Practically, for example, in this space a composer or analyst
might find ways of “moving smoothly” (or interpolating) between CCs
of varying lengths and resolutions.

Basis space necessitates the idea of full rank contours—contour
descriptors that are formally consistent with their equivalent rankings—
extending a suggestion by Polansky and Bassein (1992): n-ary contour.
CCs need not be limited to ternary values (“less than, greater than, or
equal”) but may be extended to include quinary values (“a little less
than, a little greater than, and equal”) and by extension, n-ary.

n-ary contour introduces resolution to contour representation. We
formalize that concept as a key step in the derivation of basis vector
representation of CC-space. We also generalize the Stirling number
formula for the number of possible ternary CCs for a given L (Polansky
and Bassein 1992) to n-ary CCs, showing that for every n, the number
of CCs includes the number of CCs for all lesser n. All CCs
represented by greater n are also members of equivalence classes of less
resolute or lesser n by a “child/parent” relationship.

CCs that are “children” (more resolute) of CCs of smaller values for n
are related to their less resolute “parents” by angle in basis space. This
relationship is represented geometrically as greater n CCs (children)
increasingly fill in the region defined by CCs of smaller n (parents).
These related CCs increase in number radially as n increases (for a
given L), subdividing the infinite set of morphs into increasingly
discriminating contour representations. The smallest set of CCs—the
thirteen ternary contours (L = 3, n = 1)—represents the largest equiva-
lence classes of morphs. As n increases, the number of morphs
represented by each CC approaches 1: the morph that is the same as
the n-ary CC representation.

In this paper we have generally worked with morphs comprising
non-negative integer-values, but this is an unnecessary constraint. For
example, only using integer values it is simple to also explicitly and
uniquely represent any rational-valued morph by contours of arbitrarily
large values for n. This establishes a continuum between the set of
rational-valued morphs and the set of contour representations. Further,
introducing irrational values of n extends the continuum to all real-
valued morphologies, including integer-, rational-, and irrational-
valued morphs—a topic for further work. Contours form a one-to-one
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relationship with all morphs, including those with both integer (or
rational) and real-numbered values. CC-space not only suggests several
intuitive distance relationships between all possible contours (any n
and L), but, by extension, between all morphs.

How many morphs are there? The set of all morphs is the same as
the set of ranking descriptors of all CCs for all n, L. While there are
infinitely many morphs, morph (and contour) vectors are, by
assumption, finite in length. In the case of morphs only consisting of
non-negative integer and/or rational values, the set of morphs (and,
equivalently, contours) is thus the set of all finite length (L) vectors
whose elemental values are of non-negative integer and/or rational
magnitudes, or the infinite union of finite sets of elements from
countably infinite sets, ℵ0—resulting in a countably infinite set.
However, if we allow irrational values as well, the set of morphs is the
infinite union of uncountably many finite sets, —the cardinality of the
real numbers. Alternatively, if the definition of morph allows countably
infinite length, then the set of all morphs is the infinite union of
countably infinite sets (power set) and also of cardinality .

Beginning with the most elemental (perceptual, mathematical,
musical) reduction of melodic/morphological information—up, down,
equal—and using the most basic representation of morphology
(ternary contours), we can formally generate structure for the space of
all possible morphs—melodies, rhythmic sequences, temporal forms,
and so on. The structure of morphological space is the structure of
combinatorial contour space.
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AP P E N D I X A

Normal Form CC (n = 1) CC (n = 2) CC (n = 3) CC (n = 4) Rank

[2, 0, 0]m [1, 1, 0]cc [2, 2, 0]cc 2

[3, 0, 1]m [1, 1,−1]cc [2, 2,−1]cc [3, 2,−1]cc 3

[4, 0, 2]m [1, 1,−1]cc [2, 2,−2]cc [3, 2,−2]cc [4, 2,−2]cc 4

[3, 0, 2]m [1, 1,−1]cc [2, 1,−2]cc [3, 1,−2]cc 3

[2, 0, 2]m [1, 0,−1]cc [2, 0,−2]cc 2

[2, 0, 3]m [1,−1,−1]cc [2,−1,−2]cc [2,−1,−3]cc 3

[2, 0, 4]m [1,−1,−1]cc [2,−2,−2]cc [2,−2,−3]cc [2,−2,−4]cc 4

[3, 1, 0]m [1, 1, 1]cc [2, 2, 1]cc [2, 3, 1]cc 3

[4, 2, 0]m [1, 1, 1]cc [2, 2, 2]cc [2, 3, 2]cc [2, 4, 2]cc 4

[2, 0, 1]m [1, 1,−1]cc [2, 1,−1]cc 2

[3, 2, 0]m [1, 1, 1]cc [1, 2, 2]cc [1, 3, 2]cc 3

[2, 1, 0]m [1, 1, 1]cc [1, 2, 1]cc 2

[1, 0, 0]m [1, 1, 0]cc 1

[1, 0, 1]m [1, 0,−1]cc 1

[1, 0, 2]m [1,−1,−1]cc [1,−1,−2]cc 2

[1, 0, 3]m [1,−1,−1]cc [1,−2,−2]cc [1,−2,−3]cc 3

[2, 2, 0]m [0, 1, 1]cc [0, 2, 2]cc 2

[1, 1, 0]m [0, 1, 1]cc 1

[0, 0, 0]m [0, 0, 0]cc 0

[0, 0, 1]m [0,−1,−1]cc 1

[0, 0, 2]m [0,−1,−1]cc [0,−2,−2]cc 2

[2, 3, 0]m [−1, 1, 1]cc [−1, 2, 2]cc [−1, 2, 3]cc 3

[1, 2, 0]m [−1, 1, 1]cc [−1, 1, 2]cc 2

[0, 1, 0]m [−1, 0, 1]cc 1

[0, 1, 1]m [−1,−1, 0]cc 1

[0, 1, 2]m [−1,−1,−1]cc [−1,−2,−1]cc 2

[0, 1, 3]m [−1,−1,−1]cc [−1,−2,−2]cc [−1,−3,−2]cc 3

[2, 4, 0]m [−1, 1, 1]cc [−2, 2, 2]cc [−2, 2, 3]cc [−2, 2, 4]cc 4

[1, 3, 0]m [−1, 1, 1]cc [−2, 1, 2]cc [−2, 1, 3]cc 3

[0, 2, 0]m [−1, 0, 1]cc [−2, 0, 2]cc 2

[0, 2, 1]m [−1,−1, 1]cc [−2,−1, 1]cc 2

[0, 2, 2]m [−1,−1, 0]cc [−2,−2, 0]cc 2

[0, 2, 3]m [−1,−1,−1]cc [−2,−2,−1]cc [−2,−3,−1]cc 3

[0, 2, 4]m [−1,−1,−1]cc [−2,−2,−2]cc [−2,−3,−2]cc [−2,−4,−2]cc 4

[0, 3, 1]m [−1,−1, 1]cc [−2,−1, 2]cc [−3,−1, 2]cc 3

[0, 3, 2]m [−1,−1, 1]cc [−2,−2, 1]cc [−3,−2, 1]cc 3

[0, 4, 2]m [−1,−1, 1]cc [−2,−2, 2]cc [−3,−2, 2]cc [−4,−2, 2]cc 4
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NO T E S

1. In this paper we use the word “morphology” and “morphological”
to speak in general about the objects we refer to as “morphs.”

2. In early studies of contour perception, memory and cognition
(e.g., Dowling 1972, 1978; Dowling and Fujitani 1971; Cuddy
and Cohen 1976; Cuddy, Cohen, and Miller 1979; Edworthy
1985), LC was usually the operative distance measure. In the
music theory literature, LC corresponds to Friedmann’s (1985)
Contour Adjacency Series (CAS) and Morris’ (1987, 2001) INT1
function.

3. An ordered list of values could also be called a sequence or an
indexed list.

4. Morris’ c-space (normalized prime form ranking) and COM-matrix
(representation of CC) demonstrate that for every (countable)
ranking in c-space, there is a corresponding COM-matrix, or
combinatorial contour, and vice versa. Marvin and Laprade’s
xxnormal form (Marvin and Laprade 1987; Morris 1987, 2001)
and Polansky and Bassein’s non-negative ternary representations
are equivalent descriptions of the set of possible 3-valued contours
(Polansky and Bassein 1992).

Marvin and Laprade use normal form to tabulate equivalent
contours (based on Morris’ c-space), with an accompanying
algorithm to reduce contours to normal form. Finally, utilizing the
ranking of normal form, they enumerate a table of contour classes
for contours up to length six. Morris’ contour reduction algorithm
(Morris 1987, 2001) organizes all contours, of any length, to an
archetypal set of contours of a small length.

5. Other authors, notably Huron (1995), propose fixed-length
typologies to represent different length contours, using statistical
reductions of morphological values (an idea also used implicitly by
Seeger [1960]).

6. Like CSIM and OCD, OLD (Ordered Linear Direction) a simple
Hamming metric—a normalized count of “trivial” metrics (whose
results are either 1 or 0, or “same/different”). Excluding 0, the
number of values this metric assumes is L − 1, so the grain (g) of
the metric is 1/(L − 1).

7. Also, Morris’s (1987, 2001) COM(a, b) function.
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8. See, for example, Morris’s (2001, 21) definition of c-space,
consisting of “c-pitches (cps) . . . numbered in order from low to
high, beginning with 0 up to n − 1. The precise intervallic distance
between the cps is indefinite, ignored, or left undefined.” See also
Morris (1987, 26).

9. Following Morris’s tree structure and contour reduction algorithm
(1987, 1993, 2001).

10. In its simplest form, Polansky’s OLD metric (1981, 1987, 1996) is
equivalent to those used by other theorists, such as Morris (1993)
and Marvin and Laprade (1987), as well as to distance functions
used in the music cognition and ethnomusicology literature and in
information science (Hamming distance).

11. It is possible to extrapolate relationships between LCs using vector
arithmetic. For example, the relationship LCA is to LCB could be
extended to new LCs LCC and LCD by adding to LCC the differ-
ence vector LCB − LCA. Relationships, however, are not always
perceptually consistent due to the toroidal structure of the space.
For instance, [−1, −1]lc (is less than, is less than) plus [0, −1]lc (is
equal to, is less than) intuitively should be is [−1, −2]lc (is less
than, is even more less than), however, because torus wraps values
of abs() > 1 around the edge of the space to [−1, 1]lc (is less than,
is greater than).

12. More concisely, a morph is in normal (ternary) form iff the minimum
element is 0 and the number of unique elements = max_element −
min_element + 1 (for ternary contours max_element = 2).

13. These relationships are implicit in and reconstructable from the
combinatorial ternary direction vector.

14. Morris (personal communication, 2017) refers to these as “steps.”

15. Intuitively, L (length) and n (magnitude) are analogous to the digital
representation of a continuous signal, where L roughly corresponds to
sampling rate, n to bit-width. Resolution is increased by either or
both, eventually approaching the signal itself—or, in this case, the
morph itself—by an infinitely close approximation.

16. The range of morph deltas referred to by n is not specified. Larger
values of n only refer to greater degrees of resolution—that is, a
more resolute quantization of contour. Division of a morph into n
contour values is an implementation issue, not germane to this
article. For example, a nonary contour (four values of “greater
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than,” four values of “less than,” one value of equal) might have
values considered as “very much less than,” “not so much less
than,” “a little less than,” “very little less than,” “equal,” “very
little greater than,” “a little greater than,” “not so much greater
than,” “very much greater than.” Alternatively, n might equally
quantize (divide) a morph’s total range.

17. In fact, a binary representation—[1, 0]—for “same/different”
representation, sometimes called the trivial metric is even simpler,
but is asymmetric and doesn’t conform to the conventional
definition of directional change.

18. For example, for CCs of length L = 3, written [d(a, b), d(a, c), d(b,
c)], the contour is full rank if the additive property holds for the
deltas between morph elements a, b, c: d(a, b) + d(b, c) = d(a, c). For
CCs of length L > 3, written [d(a, b), d(a, c), d(a, d), . . . / d(b, c),
d(b, d), . . . / . . .], the contour is full rank if the additive property
holds for any three morph elements x, y, z: d(x, y) + d(y,i) = d(x, z).

19. In this paper we use the term combinatorial basis space to represent
full rank combinatorial contour vectors—those that do not violate
transitivity or additivity when interpreted as a half matrix of
pairwise comparisons. This is a somewhat redundant term—any
vector space has a basis—but we use “basis space” to distinguish
this representation from our earlier representation of combinatorial
contour space (CC-space) in Lcc-dimensional Cartesian coordinates.

20. While all possible CCs are represented, there will always be CCs of
the same Lcc which lie in different rank-defined regions of basis
space. However, all CCs of the same Lcc—even those of different
rank—are contiguous.

21. Scalars and consequently, values for n, need not be integers, even
though we limit ourselves here to integer representations of both
contour vectors and basis-space axis values. Extension to rational
and real values does not affect the formulation of the space.

22. This is the same as Callender, Quinn, and Tymoczko’s (2008)
transposition space.

23. “Prime form” (Marvin and Laprade 1987).

24. The formula for the number of possible ternary contours is:

∑
h =1

L

h! S (L , h )
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25. Contour rank is related to both size and resolution depending on
normalization (Polansky 1981). If rank is normalized between
contours, then contour size is fixed and rank corresponds to the
resolution of the contours. If rank is not normalized between
contours, then contours grow in size as rank increases.

26. Morph normal form vector equivalents of CCs are likewise
representable, in any magnitude, in a basis space isomorphic to CC
basis space. This “normal form” space consists of all morphs with
at least one zero value (“morphs invariant under transposition”).
By isomorphism, CC basis space represents all possible morpholo-
gies, in normal form, of any length, comprising elements of
arbitrary magnitudes with zero as minima. This isomorphism
collapses the distinction between contour and morphology.

27. For example, Callender, Quinn, and Tymoczko (2008).

28. Cosine similarity measures the cosine of the angle between two
vectors and is defined as

cos (θ)=
A⋅B

∣∣A∣∣∣∣B∣∣

29. A more through explication of the relationship between OCD and
angular distance as well as its extensions to musical problems is a
topic for further research.
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