HMSL Intonation Environment

by Larry Polansky

1. INTRODUCTION

This article describes the experlimental intona-
tlon facillitles avallable In the HMSL (Hlerarchi-
cal Muslc Speclflcation Language) (Version 2.0)
programming environment developed by Ph!i Burk,
David Rosenboom and +this writer at the Milis
College Center for Contemporary Musice. HMSL runs
on both the Commodore Amiga and the Apple Macin-
tosh (as well as on an 5-100 68000 based prototype
at the CCM). Since the Macintosh verslon supports
only MIDl-based sound synthesls, +thls article
doals malnly wlth the use of HMSL to drive the
tunable "local sound™ capablilt+les of the Amliga.

Affordable MIDI devices are becoming avallable
t+hat allow the speclflication of polyphonlic tuning
environments (e.g. the Yamaha FB-01). The soft-
ware-based tuning procedures described 1iIn this
article are dlirectly applicable +o the Macintosh
version of HMSL as well. There Is currently sup-
port of +he FB-01 by HMSL drivers, and we will
+ry and support other standard devices as they
appear. All of these drivers will use +the con-
cepts, described below, of +translators, tunings,
and tuning-ratlos.

1o THE HMSL PROGRAMMING ENVIRONMENT

HMSL 1s a real-tIme performance and compositlonal
environment written 1In an obJect-orlented verston
of FORTH (developed by Phil Burk). Thus, In HMSL
+here are actually three co~existent and Interact-
ing software environments avaliable ‘o the compo—~
ser and programmer: 1) FORTH, 2) Object Orlented
Programming Support (0OPS), and 3) HMSL. The user
or programmer may use any part of FORTH In an HMSL
program, or extend HMSL Itself via the OOPS. This
article focuses on the use of the Amlga's local
sound for tuning purposes. The main Ideas of HMSL
are documented elsewhere (see references), as are
+he maln concepts of object-orlented programming,
+o which HMSL more or less fully conforms.

First a small apologla. HMSL was hot deslgned
primartly for experlimental Intonation, but for
formal and perceptual experimentation In the
context of a real-time generallized stimulus-re-~

sponse envlironment. Because of the programming
power of HMSL's ob Ject-orlented tools, and because
of +the useful and rather powerful local sound
capabllities ot +he machine, the tuning routines
in the Amiga verslon are, qulte candidly, a result
of the ease with which they can be Implemented.
Tunable MID! equipment has only recently become
avallable, and HMSL has been malnly +argeted for
MID! userss Due +o the secondary Importance of
tuning In this environment, and the need to focus
development time on the Implementation of larger
scale compositional and performance +tools, in-
tonational tools are IImited to a scale or ngamut®
based environment, rather +than the "dynamlc® or
"paratactical® +tunlng systems 1| have advocated
elsewhere. (Polansky, 1987; Polansky, 1985(b)).
Future verstons of +the language will further
Integrate 1deas of experimental Intonation with
the HMSL-based 1deas of perceptual distance func-
+lons, dynamlc formal hlerarchles, and generallzed

stimulus-response definitions.

111« AMIGA SOUND SYNTHESIS

The Amiga supports 4 volces of arbltrarlly-speci-
ftable 8~-blt waveforms under a hardware multipro-
cessing environment. This means that the program-
mer only nesds +o speclfy certaln parameters of
t+he sound, and the system takes care of updating
the digital-to-analog converters without tylng up
the CPU. The parameters that may be specified
are: perlod, loudness, starting address of wave~
form table, length of waveform table, and whether
or not the selected volce amplltude or frequency
modulates another volce.

What follows In thls sectlon tis not meant as a
complete descriptlon of the Amiga sound capablifty
{see the Amiga ROM Kerne! and Hardware Manuals for
that), but rather as one ._omposer's notes on
various uses of that capabilliy.

The current verslon of HMSL Implements the Amiga
sound faclllities In the simplest possible manner,
by writing values dlirectly to the sound co-proces-
sor chlp, or, more speclifically, +the memory ad-
dresses, referred to as registers, from whlch the
co-broceséor obtalns values for +he sounds Al-
though +this way of doling things s fast, simple,
and very easy to modlfy, I+ does not take full

Volume 3, Number 1

M“:ﬁ’”é’"‘s 47—

advantage of the Amiga Rom Kerne! Operating sys-
tem, which provides device drivers that allow
programmers to use the hardware fully without
risking multitasking confllcts. So far, we have
not experlenced any dlifficulties In doing things
thls way (In fact, It seems to be the most common
way for programmers to use the sound hardware!).
However, a later revision of the system will most
I1kely use the Amliga system calls more fullye

For a glven volce (or channel), loudness 1s specl-
fled by a number between 0 and 64. Perlod !s more
complex, since 1t 1Is of course more usual to
specify frequency. The value for pertod tells +he
sound channel. hardware how fast to read through
the currently assigned waveform table. Thus, the
specifled value for perlod Is the Inverse of the
sampling rate. The length of the waveform (number
of memory bytes) and the value for pertlod comblne
to determine the frequency heard. For example,
doubling elther the length of the waveform +table
or the perfod halves the percelved frequency.

There are at least two maln ways of speclifying
steady-state +imbre, or waveform. The flrst,
which Is sampling (more or less), Is to specify or
capture a sound event t!n terms of all lteratlons
of the waveforme A large amount of memory Is used
for this technique, and the percefved pi+ch of the
sound Is largely determined by the actual pattern
repetition of +the stored sample. This Is +he
technique used by most commerclal musfc packages
for the Amiga.

The second technique Is to specify only one ltera-
tlon of +the waveform, and use the perlod reglster
to alter the frequency. A very nice and sonically
powerful feature 1Is +the abllilty +o specify any
memory location and any memory length for the
waveform table. For example, one could speclfy
the top of the FORTH stack as the beglnning of +he
table, and since the DAC's are refreshed by the
paralle! processor, I1isten +o the dynamicaliy
changling waveform for debugging purposes. Inter-
esting relationships of phase, tuning, +imbre, and
modulatfon can be created between volces by
dynamically altering these starting addresses and
table lengths.

There are |Iml+s to +the numerical value that can
be assigned to the perlod. The values themselves
are not Important here, since thelr perceptual
result Is directly related to +the slze of the

Volume 3, Number 1

waveform table. Note that the upper pltch !Imi+
depends directly upon the waveform table length,
and for rather long tables (longer +than 64 bytes
for one Iteratton of a waveform), +hat upper
frequency IImlt can be restrictive for most uses.
This ts, of course, not the case wlth sampiing
technlques.

One Important conslderation In using the Amiga 1s
that frequency resolutlon decreases exponentlally,
and Inversely to perlod or directly to frequency.
For example, glven a constant size waveform table
(usable values, regrettably, tend to be more or
lass between 8 and 64 bytes), there are 2000
dIscrete frequency values between perlods of 4000
and 2000 (with 4000 producing a lower frequency),
but only 250 dlscrete values between 500 and 250,
3 octaves hlgher. Thls can be confusing, slnce I+
rather directly contradicts +he usual perceptual
relattonships of resolution, pitch discrimina-
tion, and frequency. However, for most reasonab-
ly-stzed waveform +ables, and especlally for the
mld- to low- frequencles, +he resolutlon tends to
be within a cent.

HMSL contains simple FORTH drilvers for all sound
functions. These routines are easy to use Inslide
of FORTH or HMSL routines. For instance, the
routine called CRECEND|.RANDOM.PITCHES (EXAMPLE 1,
page 10), will produce a sequence of crescend! on
random pttches In channel 0. Note that +hls ts
not really an HMSL program, but a FORTH routine
that uses +the HMSL Internal sound drilver primi-
tives.

These simple sound drivers are ™"below" +the
ob Ject-orlented environment, but serve as baslc
routlines avallable +o the composer for experiment.

Since the sound hardware 1In the Amiga Is
"wirlte~only,” HMSL keeps a memory Image of current
parameters for all four channels. This allows the
programmer to "read" the perlod, loudness,
(DA.PERIOD@@, DA.LOUDNESSE8) or other parameters
at any glven t+ime.

Other Important aspects of +he sound hardware
relate malnly to timbre. There Is a 7k low-pass
fllter on each channel of the stereo output, with
a rather steep slope. This value Is conservatlve,
and I+ Is preferable to dlsable 1+ and replace 1+
with a programmable or analog fllter. | have done
this, with the help of Dave Lucas and Greg Ketller

&) | 5

of Amlga, and will soon publish the method. A
higher cutoff frequency glves another octave or so
of partials for most frequencles, and greatly
Improves the quallty of +the 8-bit+ sound. There
are several other fechnfques for Increasing the
+imbral resolution, for example, "ganging" togeth-
er the amp!ltude modulatlion channe! and the car-
rler to effectively produce a waveform with hlgher
resolution. Since the loudness resclution Is only
6 blits, and since this "gangling® !s multiplicative
of one channel's waveform value by the other's
foudness, the resultant resolutlon would be around
12>bl¥se This, llke the use of an AM channel for
envelopes, effectively reduces the sound capabliii-
tles from four simple volces to two complex ones.
This technique, unilke sampling, ts memory effi-
clent and offers the programmer powerful modula-
+lon possibliities.

1Ve HMSL TUNING PROCEDURES
HMSL's support of the Amlga's local sound, written

by programmer Phi! Burk, Is based on an instrument

concepte. I+ fully supports the use of samples,
user defined envelopes, experlimental tunings, and
arbitrary waveform definttton. These routlnes are
high-level object-orlented code, so the followling
sectlon assumes the reader's famillarity with the
baslics of that type of programming. The following
description, however, should be comprehensible
even 1f one has not had experlence with ob Ject-or-
tented programming.

instruments are a class
stance varlables for tuning (that 1s, the address
of a pre-deflned scale), envelope, channel#,
period, and waveform. These Instance-variables
are actually references to other obJects, and the
{nstrument ltself could be thought of as simply a
collection of parameterse. Each user-defined
Instance of +the class of objJects called Instru-
ments has bullt-In Intelllgent procedures, called

methods, for handling these parameters. For
example, one can Inspect or change envelopes,
samples, waveforms, +tunings, etc., very simply

{and of course In real time) in the object-ortent-
ed code. Although one can play an Instrument one
®note™ at a time, these Instruments are designed
+o be used !n the hlerarchical environment of HMSL
as a virtual device, simllar ‘o process for
sending MIDI Informatlion. As such, the Instru-
ments can also be used to execute +the complex
hlerarchical and morphological data results of
HMSL's compositional englnes.

tn the system with In-

&

Envelopes are 2-dimenslonal

The relationship between Instruments and tunings
Is particularly relevant. Each Instance of the
class of Instruments (that 1s, each user-defined
tnstrument) "knows" what Its current tunlng Is.
The user can change +he tuning qulickly with code
I1ke the following: PENTATONIC-SLENDRO
PUT.TUNING: MY-INSTRUMENT This places the prede-
fined PENTATONIC-SLENDRO ftp" the Instrument
called MY-INSTRUMENT. This Is done In software,
so algorithms can easily be written which might,
for example, change +the tuning of an Instrument
tn response to a glven stimulus (like a keystroke,
or the Input from an analog—to-digttal converter).

The +tuning 1+self can easily be changed In
real-time. For Instance, 1f one wanted two dif-
forent ratlos from 1/1 for the sixth degree of a
scale depending on 1+s context, one could sense a
stimulus {e.gs which other keys were activated),
and update the actua! tuning array qulckly. In a
sense, this would be a software Implementation of
Harold Waage's innovative logic circult for con-
+ext-dependent 1ntonatlion; but 1+ Is a more gener-
al method because the contexts, stimull, respons-
es, and possible Intonatlons are all user defined
and eastly altered.

arrays wlth Tnstance
variables for sustaln polnt and +ime values.
These shapes can be changed by the user elther
graphically, or point-by-point In software via
pro—~defined methods. The detalls of thelr use iIs
not partlicularly germane to this discusslon of the
tuning environment.

Waveforms are a class of objects which Incorporate

the notlon of samples or computed waveforms. Thelr
use Is highly tlexible, and they can be updated
dutckly. They are "flle™ orlented, In a spectal
HMSL format, and can be read to or wrltten from,
or edited easlily, via +the HMSL shape edltor (not
described In this article).

Translators are a class of obJects which must be

described before discussing tunlings. Translators
are general operators which convert from one
numerlc system +o another. In our case, thelr
maln use might be to convert a set of values from
one gamut +o another. 'They are based on the ldea
of a translation table, which has assoclated with
1+ an offset and a modulus. The offset might be
(text contlinued on page 10)

~ Volume 3, Number 1

(Tritrladic...contlnued from page 1)

Identical to each other, and thus, <there are only
18 distinct +ritrladic scales derivable from a
glven trlad. These are shown In Table 4 (page 8).

The three primary types of tritrladlc scale have
been plotted on the d x m plane +o produce the
tonal lattlices of Flgures 1 +through 6 (center-
fold). As may be seen, each conslists of three
trlads of the PRIME type and two of the CONJUGATE.
1f m=5/4 and d=3/2, then Flgures 1 and 2 are the
majJor and natural minor modes, respectively.
Because the RETROGRADE and INVERSE scale forms are
related to the PRIME and CONJUGATE forms +through
clrcular (modal) permutation, and +his appears as
a simple transiatlon (transposition) of the lat-
tlce,the PRIME (P) and CONJUGATE (C) forms have
been plotted. Hence, +there would appear to be
only slIx fundamental scales from which the rest
may be derlived by +ransposition and permutation.

Moreover, the M->T and D->M types are related In
an Interesting fashlon through +he CONJUGATE (d-
>d/m) transformation. (Flgures 3, 4, 5, and 6)
These types have a novel, fresh 'sound, harmonical-~
ly and melodically, even when constructed of
famlilar 4:5:6 trlads. Furthermore, the two Order
2, D->M scales are tetrachordal when d=3/2 and
9/8<m<4/3, and this affords a means of harmonizing
the Dorlan Mode of such tetrachordal scales where:
x/y x 9/8 x z/w = 4/3, m or d/m = 9*x/8%y or d/m =
9%z/8%y,

The entlre set of 18 tritriadic scales with 1/1 as
the common +onlc requires only 19 tones (Flgure
7), although +he six -scalar lattice—forms can be
aggregated through shared tones so that 12 pltches
sufflice to demonstrate the exlstence of each type.
This 19~tone array would seem to be the mintmally
complete tonal fleld for harmony derlved from the
generallzed triad T:M:D. ®

Table 1.

DERIVED FORMS OF THE TRIAD T:M:D

ORDER PRIME CONJUGATE INVERSE = RETROGRADE
1e T:M:D MET:D*T:D¥M D*M:D*T:M*T DsM:T
2. TeD:M D*T:M*T:D¥M D*M:M*T:D*T M:D:T
3. D2T:M D*T:D¥M:M*T M*T:D¥M:D*T M:T:D

Table 2.

DERIVED FORMS OF THE TRIAD 4:5:6

ORDER PRIME CONJUGATE INVERSE RETROGRADE
1e - 43536 20:24:30 30:24:20 6:5:4
2. . #:6:5 24:20:30 30:20:24 5:6:4
3. 6:4:5 24:30:20 20:30:24 5:4:6

Table 3.
1,2,3
TYPES OF TRIADIC MATRICES

FUNCT{ON D->T M=->T D=->M

SUBDOMINANT 2/d m/d 2/1 2/m 2/1 d/m m/d m*/d m
TONIC" /1m d t/1m d /i m d

DOMINANT d dm d* m m® mtd d/md d*/m

1« The T->D, T->M, and M->D matrices exchange the
"dominant® and “subdominant" functlons, but
comprise the same tones and lattice.

2. All twelve of +he M->T matrices are ldentical
to forms of the D->T.

3« Only six of the D->T matrices are distinct.

‘Volume 3, Number 1

(HMSL....conttnued from page 6)

used, for example, +to speclfy +the
lowest note on a given MID| keyboard,
'so that any Index passed to the trans—
{ator would be converted to a mean-
Ingful value for +the output device.
The modulus speclfles the value above
which +the transiator wlll repeat Its
pattern. For example, a modulus of 12
and an offset of 36 would allow the
user to define standard scales for a
MIDl device. A simple routine, called
TRSET.KEY (EXAMPLE 2), accepts as
parameters the offset, scale values,
and number of values In a scale and
puts them 1In a +ranslator called
TR-CURRENT-KEY.

The default modulus for +ransiators fs
12, so TR.SET.KEY does not ask for a
modulus. This can be changed and In-
spected with the PUT.MODULUS: and
GET.MODULUS: methods.

Since the modulus, offset, and transia-
+lon method (which could be qulte
complex) are all user deflned, compl!l-
cated data transformations are possible
using these simple methods. This
becomes especlally relevant for chang-
Ing scales or gamuts, where, for exam-
ple, the modulus might be the number of
pltches per octave, and the trans!ation
might be a non-simple function of
fndlces (that 1Is, the scale degree)
Into frequency values. Llke all of
these ob Ject-orlented sets of routlines,
"translators" are easy <o learn and
use, but are surprisingly powerful in
thelr applications.

The class of objects called tunings are
actually a subclass of transiators. In
ob Ject-orlented programming, +hls means
that the subclass Inherlts from its
parent class (called +the superclass)
al! methods and Instance varlables
(which might be thought of as "hldden
data" speclfic +o each Instance of that
class). For example, slince the class
transiators has a method called
GET.MODULUS: which returns the current
“modulus for any

10

RRAMPLE 1
{ A simple example using HMSL Awigs sound drivers)

: CRRSCENDI.RANDOM,PITCHRS
0 DA.CHANNEL! (select current channel ag 0 |}
(The prefix DA stands for Digital Audio }
-DA.START { start the chanmnel)
BEGIN y
4000 128 WCHOOSR { pick & random number between 4000 and 128)
DA.PRRIOD! { set period of channel 0 to the random nusber |}
DA.LOUDNESS® { get current loudness of channel } :
1+ 64 MOD { increase the value until the peak is reached, and then
back to 0 }
DA.LOUDNESS! { change the loudness of the channel }
500 200 WCHOOSE (pick a randoa number between 500 and 200)
HSBC (delay by that number of milligeconds }
PTERMINAL (test for keystroke to indicate end of BEGIN ...UNTIL}
UNTIL
DA.8T0P { stop the channel |

1

BIANPLR 2
{ Put the mixolydian mode into the variable YR-CURRENT-KRY)
¢ TR.MITOLYDIAN.MODR
36 (offset, bottom note for C2-101 ...)
10975420 (Mixolydian scale values in descending order |}
(PORTH is BPN....)
7 (nusber of values in scale |
TR.3BT.KBY { sets TR-CURREBNT-KBY |}

Instance of that class, so does every Instance of the class
tunings. (Once agaln, the reader !s referred to standard
references on ob ject-orlented programming for more Informa-
+ton on these ldeas.

The TRANSLATE: method for +tunings s silightly simpler than
for translators. For tunings, no modulus or offset 1s used,
so that an absolute frequency or perlod Is generated from an
Index. Whereas transtators "wrap" around thelr modult, dun-
lggi_"éltp" at thelr own |imi+ (or the number of values In
the table). One of the design motivattons for +hls was to
allow the possiblililty of non-octave-replicating tuningse.
Since "tunings" contaln actual frequency or perlod values,
i+ Is easy to flll a tuning for several octaves by simply
multiplying by two.

Either a tuning or a translator can be "put" +o an Instru-
ment, and +the Instrument "knows" which 1+ has. This ts a

D) Volume 3, Number 1

BXAMPLE 3 _
{ Two simple TUNING.BATIO definitions |
OB.TUNING.BATIOS RATIOS-CHALMERS-NBUTRAL
0B.TUNING,RATIOS BATIOS-OVERTONR
{ define two instances of the class TUNING.RATIOf)
: BAT.INIT (--- , Initialize tuning systems)
7 NB¥: BATIOS-CHALMRRS-NBUTRAL { 7 scale values for this onme)
{ scale: 1/, 24/23, 12/11, 4/3, 372, 36/23, 18/11)
1 1 ADD: BATIOS-CHALMERS-NBUTRAL (start adding in ratio
values |
24 23 ADD: RATIOS-CHALKBRS-NBUTRAL
12 11 ADD: BATIOS-CHALMBRS-NRUTRAL
4 3 ADD: BATIOS-CHALMBRS-NEBUTRAL
3 2 ADD: BATIOS-CHALMBRS-NEUTBAL
36 23 ADD: RATIOS-CHALNERS-NEUTRAL
1811 ADD: BATIOS-CHALNERS-NRUTRAL

12 HBW: RATIOS-OVRRTONR { 12 values for this one }
12 0 DO { this one will use a DO...LOOP }
I 12 ¢ 12 ADD: BATIOS-OVEBRTONE
(this adde 12/12, 13/12, 14/12, ...
23/1% to the array)
Loop

RYAMPLE {

{ use of BATIOf to fill TUNING.RATIOS with sequential intervals, or
intervale specified by ratio to imtervals other than 1/1}

2 GBY: HY-BATIO (returns contents of second place in tuning, 8 7)
11 9 BATIOf { multiply the two ratios together }

3 PUT: NY-BATIO (put the resultant ratio in the third place)

good example of the power of obJect~orlented programming.
The name of the method used +o obtaln a value for tunings
-and translators 1s TRANSLATE: In both cases, the same param—
eter protocol exlsts for each: the user speclfles a note
Index, and TRANSLATE: returns a value of a table. Thus, the
instrument, +o get +the appropriate value, 1n I+s PLAY:
method, only has to get the address of the obJect stored In
its tuning Instance varlable. This might be elther a tuning
or a translator, and +the TRANSLATE: method acts differently
depending on which class 1t is acting upon. This means that
even though the definition of the TRANSLATE: method Is
cruclal to these classes, +the user rarely accesses I+ di-
rectly. Rather, +the Instrument's PLAY: method uses
TRANSLATE:, which automatfcally "adjusts" titself +o the
class I+ TRANSLATE:'s.

Finally, a subclass of tunings s deflned, called
tuninge.ratios. Tuning.ratlos are the basic HMSL/Amlga Just

Volume 3, Number 1)

Intonation englne. This class has one
added instance varlable, called
0B-RAT-1/1 (pronounced "ob ject ratlo
1/71"), which speclfles the fundamental
to which a ratlo Is tuneds There are
PUT.1/1: and GET.1/1: methods for thls
class, as wel! as & new TRANSLATE:
method. Tuning.ratlos, unilke
transiators and tunings are deflined as
two~-dimensional arrays. The translate
method, as In both of the superclasses,
+akes an Index and returns a value, but
tn the tuning.ratlos class 1+ computes
the value for perlod or frequency
using the value for the 1/1 and the two
elements of +the Indexed value of the
2-dimenstonal array.

Unltke +tunings, which simply "clip®
Indices greater +than the length of the
tuning, +the TRANSLATE: method for
tuning.rattos 1Is, by default, octave
replicating (that 1s, the modulus Is
assumed to be 2%¥(1/1)). However, that
modulus Is not used by the TRANSLATE:
method for this class unless one specl~
fles an . index greater +than the number
of ratlos speclifled. Thus, one can f1l}
a tuning with ratlos at any Interval
(3/1 for example), and +they will be
Interpreted correctly. The modulus
function for tuning.ratlos 1Is +thus
octave replicating 1t the user does not
want fo specldy distinct tunings for
different octaves of a gamut; 1+ will
be ‘"overrldden®™ by a more detalled
multi-octave scale.

For anyone who has ever written a
simple ratlo-to-frequency conversion
uttitty In FORTH (which Is trivial,
using "*/v), +he definition of the
TRANSLATE: method for tuning.ratios
should be easy to understand. However,
the flexibillty gatned by +he separa-
t+lon of "Intel | 1gence” between
tuninge.ratios and Instruments 1Is slig-
ntftcant. One can "put" a tuning.ratio
Into an tinstrument Just as with the
superclasses, and +the approprlate
version of TRANSLATE: will be used
automatically, but now one can also
change the value for +he

"

fundamental and Indlvidual ratfo values indepen-
dently of other Instrument parameters, and even
exchange tunlng.rattos in an Instrument rapldiy.

EXAMPLE 3 (page 11) Is a FORTH/HMSL definl+ton of
two simple tunlng.ratlos. One of +these,
RATIOS-OVERTONE, 1s current!y deftned In HMSL (as
an example)s The second s a scale, called the
neutral dlatonle, suggested by John Chalmers,
that was generated on +the Amliga (using a simple
"nood! Ing" program developed by John Chalmers and
this writer), and used for a KPFA show on exper|-
mental tunings In August, 1986. | Include these
to 1llustrate the ease wlth which and the manner
In which these are constructed. (Note for FORTH
programmers: The ADD: method takes two numbers off
the stack, and places them Into the next two-di-
mensional cell In the tuning.ratio array.)

1+ s also possible to speclfy ratlos in a "se-
quentlal™ fashion, using the utility RATIO*, which
multiplles two ratlos together +o produce an
"absolute” ratlo. For example, given the ratlo
8/7 as the second In the TUNING.RATIOS ob Ject,
MY-RAT10S, to speclfy that the third ratlo In the
array !s an 11/9 above +the second, +the cods in
EXAMPLE 4 (page 11) will suffice.

This may be used not only for adjacent ratlos, but
for any Interval In a gamut, since any tndex can
be specifled In the TUNING.RATIO for the PUT: or
GET: method. I+ should be simple to see, for
oxample, how RATI0* could be used In conjunction
with the ADD: method (see example 2 above) +o fill
a scale wlth successlive ratlos rather than with
ratlos: to the 1/1. Perhaps more Interestingly,
one could continually modlfy indirect Intervalllc
relationships In a gamut, using the RATIO* and the
PUT: and GET: methods, producing a dynamlc,
real-time Intonational environment.

V. CONCLUSIONS

HMSL Is a programming environment which Includes
facliltles for experimental iIntonation. These
faciiltles are designed to be user extensible.
The advantage Is that HMSL Is quite flex!ble and
powerful. The disadvantage Is that some program—
ming Is requlred to make use of 1+ fully; It+'s not
a "turnkey"” system.

The planned release date for HMSL (Version 3.0 for

the Macintosh and Amiga) Is around February 1,
1987 (although Verslon 2.0, a pre-release, Is

12

already In use by several composers, Including
thls author). Prlce and terms wlll be announced
soon. For Information, write to: Larry Polansky,
Center for Contemporary Music, Oakland, CA 95613
with questions or to be put on a malling list for
release Informatton. To use HMSL on the Amiga,
the user must first purchase a copy of JFORTH
(Delta Research, 4054 Wilkle Way, Palo Alto, CA’
94306). On the Maclntosh, +the user must first
purchase MACH-2 FORTH, avallable from Palo Alto
Shipping Co., P.0O. Box 7430, Menlio Park, CA 94026,
800~-44F-ORTH.

REFERENCES

BYTE Magazine, August 1986, Vol.11, No. 8, speclal
Tssue on ob ject-oriented languages. Two articles
fn +hls Issue are of speclal relevance to +hls
article: "Object-Orlented FORTH"™ by Dick Pountaln,
and "Elements of ObJect-Orlented Programming” by
Geoffrey Pascoe

Burk, Ph1l, and Polansky, Larry, HMSL Source Code,
Version 2.0, CCM In-house document, update +to be
distributed with HMSL Version 3.0 release.

Burk, Phil; Polansky, Larry, and Hays, Dorothy;
HMSL Programmer's Manual, currently CCM In-house
document; to be distributed with Verslon 3.0

Peck, Robert; Deyl, Susan; and Miner, Jay; Amiga
Hardware Manual, Commodore Busliness Machlnes, West
Chester, PA., 1985

Peck, Robert; Sassenrath, Carl; and Deyl, Susan;
Amiga ROM Kernel Manual, Volume 1 and Volume 2,
Commodore Business Machines, West Chester PA,
1985

Polansky, Larry, and Rosenboom, David; "HMSL
(Hlerarchal Music Spectfication Language): A
Real~Time Environment for Formal, Perceptual and
Composttional Experimentation®; Proceedings of the
International Computer Muslc Conference, Vancou-
ver, Canada; edited by Barry Truax, 1985, avall-
able from the Computer Music Assoctatlon

Polansky, Larry; "“Confesslons of a Lousy Carpen-
ter: Some Thoughts on Composing for Standard
{nstruments In Just Intonatlon®, In ji!: Vol. 1,
Number 1, Winter 1985

{Text contlinued on page 15)

@ Volume 3, Number 1

Index To @ Volume Two

An Assortment of Commas (and Other Irrltants)
[chartl

Doty, David B.; Volume 2, Number 1, pe 13

A European Perspective on Partch
6limore, Bob; Volume 2, Number 1, p. 4

Heavenly Harmony
Maxwell, Miles; Volume 2, Number 3, ps 1

Horton Hears a Who—-le Number Ratlo
Horton, Jim; Volume 2, Number 2, pe 1

Index of 1/1, Volume 1
Volume 2, Number 1, p. 15

A Justly Tuned Gultar
Canright, David; Volume 2, Number 2, p. 8

Mapping Tonallty
Soh!, Norman; Volume 2, Number 4, p. 1

Network Tape Released!
Volume 2, Number 3, p. 2

New Roleases: Riley and Hykes
Fischer, Andrew; Volume 2, Number 4, pe 2

The Octave Law and Natural Resonances
Terpstra, Slemen; Volume 2, Number 2, pe 4

An Open Letter
Henry, Norman; Volume 2, Number 1, pe 2

Ratlonal Structure In Music
Johnston, Ben; Part One, Volume 2, Number 3,
ps 12; Part Two, Volume 2, Number 4, p. 12

The Subharmonic Question
Doty, Davld B.; Volume 2, Number 1, pe 1

Toward Standard Definitions
Doty, Davld B.; Volume 2, Number 2, pe 2

Tunlng +he Macintosh
Jones, Robert W.; Volume 2, Number 1, pe 6

Tutorlal, Part 3: Charting Scale Resocurces
Doty, David Be.; Volume 2, Number 2, pe 6

Two Special Keyboard Projects
Rayna, David; Volume 2, Number 3, p. 4
Recurring Features:

Archlve Acqutsitions and Acknowledgements
Volume 2, Numbers 1, 2, and 4

Just Intonation Network News
Volume 2, Numbers 1 - 4

(Tutorlalsescontinued from page 14)

play the sald trlad tn tune must Ilkewlse be part
of sald scale. However, so long as you play the
10/9 where harmony requires 1+, you may call 1+
what you witl,

It should be noted that none of the ideas present-
ed 1n this tutorial orlginate wlth this writer.
All of the above matertal Is present, Implicitly
or explicitly, In Alexander Ellls' exce!lent
appendices to Helmholtz's On +the Sensatlons of
Tone. Unfortunately, most composers and theorlsts
to date have falled +o grasp the significance of

Volume 3, Number 1

this materfal (presuming +that they studled 14},
thereby unduly retarding our harmonic evolution. ®

(HMSL++scontinued from page 12)

Polansky, Larry; "Paratactical Tuning: A Suggested
Agenda for the Use of Computers In ExperImental
Intonation," Computer Music Journal, forthcoming,
1987

Waage, Harold M.; "The Intelllgent Keyboard," in
1/1, Vol. 1, Number 4, Autumn, 1985 ®

15

