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Five Constraints 
 

Tuning systems through history and across cultures have used a set 

of complex compromises to account for some or all of the 

following constraints: 

 

1. Pitch set: use of a fixed number of pitches (and consequently, 

a fixed number of intervals); 

2. Repeat factor: use of a modulus, or repeat factor for scales, 

and for the tuning system itself (i.e., something like an 

octave); 

3. Intervals: an idea or set of ideas of correct or ideal intervals, 

in terms of frequency relationships; 

4. Hierarchy: a hierarchy of importance for the accuracy of 

intervals in the system; 

5. Key: a higher-level hierarchy of the relative importance of the 

“in-tuneness” of specific scales or modes begun at various 

pitches in the system. 

 
Comment: Most tuning systems attempt to resolve some or all of the five constraints 

listed above. These five constraints can be stated formally and mathematically, and 

constitute an economical and musically reasonable set capable of providing an interesting 

analysis of any tuning system. 
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Just Intonation and Well-temperament 

 
Examination of a few well-known constructs from historical European 

tuning theory can illustrate some of the motivations for the mathematical 

framework.  

 

Standard Just Diatonic scale (begun arbitrarily on “C”): 
 

1/1 9/8 5/4 4/3 3/2 5/3 15/8 2/1  (ratios) 

C D E F G A B C (note names) 

0¢ 204¢ 386¢ 498¢ 702¢ 884¢ 1088¢ 1200¢ (cents 

values of intervals) 
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Central ideas in rationally based tuning systems 

 
• collision of primes 

• “historical tuning problem”  (pn ≠ qm for distinct primes p and q (and n, m > 0 )) 

• “canidae” interval 
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Interval Matrix 
 

The interval matrix is a useful way to encode a tuning system.  

 
 
 C 
(1/1) 

D 
(9/8) 

E 
(5/4) 

F 
(4/3) 

G 
(3/2) 

A 
(5/3) 

B 
(15/8) 

C 
(2/1) 

C  9/8 5/4 4/3 3/2 5/3 15/8 2/1 
D   10/9 32/27 4/3 40/27 5/3 16/9 

E    16/15 6/5 4/3 3/2 8/5 
F     9/8 5/4 45/32 3/2 
G      10/9 5/4 4/3 

A       9/8 6/5 
B        16/15 

 
 

Interval Matrix of Just Diatonic Scale. Intervals are in ratios within one 
octave. 5ths are in bold. The wolf (40/27) is the only non-ideal P5th. Note that all M3rds 
(C-E, F-A, G-B) are ideal intervals of 5/4. 
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Ideal Tuning 

 

An ideal tuning would be one in which the i,j entry only 

depends on |i-j| — each entry is equal to an ideal interval.  

 

 

In the ideal interval matrix, values on the diagonals are 

constant and equal to the ideal ratio. The ideal interval 

matrix is equivalent to the interval matrix only in ET.  
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Error Matrix 
 

The error matrix of a tuning system contains the differences between the entries of the 

interval matrix and the respective entries in the ideal interval matrix.  

 
 C C# D Eb E F F# G Ab A Bb B C 

C  90 192 294 390 498 588 696 792 888 996 1092 1200 

C#   102 204 300 408 498 606 702 798 906 1002 1110 

D    102 198 306 396 504 600 696 804 900 1008 

Eb     96 204 294 402 498 594 702 798 906 

E      108 198 306 402 498 606 702 810 

F       90 198 294 390 498 594 702 

F#        108 204 300 408 504 612 

G         96 192 300 396 504 

G#          96 204 300 408 

A           108 204 312 

Bb            96 204 

B             108 

 
Figure 2: W3 ½-matrix. Each diagonal is a specific interval. “Keys” correspond to 
rows. All keys in W3 are considered reasonably good. Values are in cents. 
 
 

 
 C C# D Eb E F F# G Ab A Bb B C 

C     4 0  6      
C#      22 0  0     
D       10 6  6    
Eb        16 0  0   
E          16 0  0  
F          4 0  0 
F#           22 6  
G            10 6 
G#             22 
A              
Bb              
B              
              

 
Figure 3: W3 error 1/2 - matrix. Three (diagonal) intervals (M3rd, P4th, P5th) are 
shown for the ½ - matrix. Note that the “central keys” (C, F) have smaller errors for the 3rd 
and 5th (another central key, G, is the inversion of F, and is not shown in the ½-matrix).  
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Mathematical Formulation 
 

The five constraints on tuning systems are formalized as follows:  

 

1. Pitch set: let a1 to an be a set of n pitches, none equal 

to 0. 

2. Repeat factor: let ω > an be the repeat factor of the 

tuning system. 

3. Intervals: let I1 to In represent the ideal intervals. 

4. Hierarchy: let i1 to in be interval weights to represent 

the desired accuracy of the n intervals in the tuning 

system. 

5. Key: let k0 to kn be key weights to represent the fixed 

pitches in the tuning system to which intervals are 

measured. 
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Interval, Ideal Interval, and Error Matrices 
 
The interval matrix M for a set of n pitches, a1 to an, is written as: 
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The ideal interval matrix L represents the desired interval for each entry in 

the matrix M: 
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The error matrix is the difference between the interval matrix M and the 

ideal interval matrix L.  

 
The total error of a tuning system is defined as a function of the error matrix. In the 

absence of any key or interval hierarchy (i.e., the interval weights and key weights are all 

equal) the error function is: 

  

! 

E(
r 
a ) = M " L( )#

2

, 

where the vector   

! 

r 
a  contains the n pitches, a1 to an, and the exponentiation and summation 

are applied element-wise to the matrix.  
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Interval and Key Weights 
 

To formalize the notion of the relative importance of intervals and 

keys, we use interval and key weights. These weights can be 

applied to the error function through a weight matrix W. 
 
 

The weighted version of the error function is  
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Unique Solution 
 

 

For each set of constraints specified in the matrices I, K and L, 

there is a unique solution that minimizes the weighted error 

function. This solution is called the optimal tuning system, and it is 

a set of pitches a1 to an.  

 

While the optimal tuning is unique to a given set of constraints, the 

converse is not true: there is not necessarily a unique set of 

constraints that will generate a given tuning. In other words, 

multiple sets of constraints can generate the same tuning, within a 

specified tolerance. 
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Minimal Mean-Tempering 
 

We generated two new optimal tunings with the same minimal 

mean-tempering as W3, Young 2, and 12-ET. Using “reasonable” 

sets of ideal intervals, we found sets of weights for two new 

optimal tunings (OWT1, OWT2).  

 

These two new tunings are maximally in tune by a specific 

measure: mean-tempering of triads. They have a great deal in 

common (ideal intervals, key and interval weights), theoretically 

and musically, with historical WTs. Yet, their musical implications 

and structure differ in important ways from their historical models.  
 
W3 0 90.2 192.2 294.1 390.2 498.1 588.3 696.1 792.2 888.3 996.1 1092.2 

Young 2 0 90.2 196.1 294.1  392.2 498.0 588.3 698.0 792.2 894.1 996.1 1090.2 

OWT1 0 102.0 203.8 297.2 396.3 498.1 600.0 702.0 803.8 897.2 996.3 1098.1 

OWT2 0 93.1 203.1 296.3 397.4 498.5 591.7 701.6 794.8 903.4 997.4 1091.4 
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Four different minimally-tempered WTs  
 

 
 

Tempering of triads in four minimally-tempered WTs.  
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Future Directions 
 

• Further exploration of parameter space (what is its 

geometry) 

• Constraint based system —interest and veracity are 

dependent upon the choice of constraints/ 

• Different error functions 

• Multiple interval representations  

• Exploration of tuning systems throughout the world, 

using available documentation (such as Central 

Javanese slendro) 
 

 

 

More examples, software, materials, soundfiles, writings: 

http://eamusic.dartmouth.edu/~larry/owt/ 


