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Part 1: The “Historical Tuning Problem” 
For two primes p and q, there are no integers m, n, such 
that: 
 

pm = qn 

 
In other words, what is called the Diophantine equation, 
 

3m = 2n 
has no solutions. 
 
This means, informally, that any tuning system which 
more than one prime will at some point be “out of tune” 
with itself. Further, since primes are the “building 
blocks” of all integers, this applies to any whole number 
based tuning system. 
 
No scale can include two primes and “resolve.” That is, 
any a scale based on rational numbers must, in some 
sense (that needs defining), be inconsistent. 
 
This fact has been crucial in the development of tuning 
systems throughout history, and around the world. 
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Simple Example: Pythagorean System 
The most well-known and simplest demonstration of what might be 
called prime collision can be seen in a scale built on the simplest non-
octave ratio, 3:1. 
 
Since 3m ≠ 2n  (always), no cycle of fifths will ever “resolve” to an 
octave (2:1). 
 
Note that taking the log2 of both sides gives 
 
   m/n = log23 
 

— which, using simple mathematical techniques, yields a 
number of rational number approximations [1]. 
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Constraints 
Commonly, scales around the world and throughout history have 
had at least two constraints: repeat factor and number of degrees.  
 
Repeat Factor 
Many scales have, as a constraint, some notion of repetition. This is 
usually the octave (2:1), but does not have to be. Scales have been 
hypothesized which repeat at the 3:2, or any other ratio. Other 
scales, like central Javanese slendro, use repeat factors which 
“stretch” the octave by some small amount (perhaps 10-20¢). Repeat 
factor may be seen as a kind of special case of prime collision (if one 
scale value is fixed in this way, all other intervals must “deal” with it 
somehow). 
 
Number of Degrees 
Most scales are fixed, or at least limited, to a small number of 
pitches, or scale degrees. This is usually motivated by physical 
instruments which have some number of keys, strings, holes, etc. 
 
Note that without these two constraints, prime number collision is 
less of a problem, if at all. 
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Keeping the wolf from the door: compromise and scale 
 
The wolf-fifth (on the supertonic) in classic just intonation 
 
 
1/1   9/8    5/4     4/3   3/2   5/3   15/8   2/1 
   9/8   10/9   16/15   9/8  10/9   9/8   16/15 
 
 
The interval between the 2nd degree (9/8) and the 6th degree (5/3) is 
40/27, or the “wolf 5th”. Changing the 6th degree to 27/16 makes the 
5th build upon the second degree “pure,” but makes the 5th built upon 
the 6th degree the wolf. 
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The usual example of “prime collision” in just intonation 
involves the tuning of scale degrees 2, 3, and 6. There is a “good” 
5th between 2 to 6, and 6 up to 3. However, the 5th between the 2nd 
and 6th scale degrees is, historically, not anyone’s idea of an 
“ideal” ratio. 
 
This shows the conflict between 3- and 5-limit tuning systems, 
and could be said to have been the motivation for the long 
history of “compromise” tunings (mean-tones, well-
temperaments, and finally, 12-ET).  
 
 
There are, of course, many, in fact infinitely many, other possible 
instances of this general problem (I call this the canidae problem, 
it’s not the genus, but the “family”). The problem is the 
“collision” that must occur in scale systems which use more than 
one prime, not just 3- and 5-: even 3- and 2- cause this problem. 
(In a great deal of contemporary music this is a feature, not a 
bug) 
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A detailed “cookbook” explanation of the wolf-5th: 
 

If the 2nd of a simple diatonic just scale is tuned as 9/8, 
and the 6th as 5/3, then the interval between those 
two scale degrees (a P5th) becomes, 5/3 / 9/8 = 40/27 
(-20¢ of a 3/2): the wolf-fifth.  

That P5th (between the 2nd and 6th degrees), necessary, 
for example, in the supertonic triad, will be “out of 
tune.”  

However, the 5th from 5/3 up to 5/4 remains "ideal" 
(3/2).  

Alternatively, if the 6th degree is tuned as a 
Pythagorean 27/16, and the 3rd as (a just) 5/4, then 
the same situation arises as a P5th upon the 
submediant (27/16 / 5/4 = 27/20, the P4th, or is the 
inversion of 40/27). 
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1/1, 2/1 (1200¢) 

Just Intonation as a Circle 
 
Note that it is not just the 3-5 collision that causes the wolf-fifth, 
but the repeat factor (2/1). The 6th degree up to the 3rd degree is 
usually cited as the problem (not the inversion, the 6th degree 
down to the 3rd degree). In other words, the scale “wraps” 
around some fixed point (2/1). All other distances between 
intervals must be “juggled” over the circumference of the circle. 
The 2/1 can’t move. But, when one interval is moved, all 
intervals are changed. 
 
 
 
 
 
 
 
 
 
 

 

5/4 (386¢) 

5/3 (884¢) 

9/8 (204¢) 

3/2 (702¢) 
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Mean-tone, Well-temperament 
Historically, mean-tone temperaments preserve just relationships 
exactly for a few intervals, and compromise others by a fixed 
amount (1/4-comma, 1/6-comma, etc). Mean-tones tend to be 
very good (in approximating important ideal intervals) in a few 
(important) keys, and quite bad, or, by definition, useless, in 
“outer” keys. 
 
Well-temperaments usually have few (if any) exact ideal intervals — the 
“error” is distributed widely over the entire scale. Ideal intervals (often, 
historically, 5/4 3rds and 3/2 5ths) are approximated to most scale degrees. 
Few or none of the intervals are exact. These tunings may be thought of as 
techniques for fitting a fixed number of pitches to a fixed set of tuning 
relationships (or constraints).  
 
Consequently, well-temperaments are thought to be “more in tune” for a 
greater number of musical keys than MTs, which are usually “good” for 
some keys, and “not so good” for others. WTs do preserve the notion of 
“good” and “less good” keys, as well as “good” and “less good” intervals, 
but they tend to be more complex than MTs, and fit more intervals and 
more keys better. 
 
WTs are perhaps the most interesting set of tuning systems in that they 
approximate some set of ideal intervals (like just ratios) in the context of a 
fixed set of pitches, keys, etc. Although the term has a more specific 
historical meaning in western art music, a general interpretation of the term 
could include MTs, Central Javanese slendro and pelog, many other world 
music systems, and even equal temperament.  
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An example of an historical well-temperment (Werckmeister 
III) 
 
  
 
This tuning is often thought to be one of the major advances in historical tunings, 
and possibly the one intended by Bach in the WTC (or maybe one of Kirnberger’s 
tunings). W3 is (rounded to the nearest cent): 
 

C# 90¢ 
D 192¢ 
Eb 294¢ 
E 390¢ 
F 498¢ 
F# 588¢ 
G 696¢ 
G# 792¢ 
A 888¢ 
Bb 996¢ 
B 1092¢ 
C 1200¢ 

 
Rasch’s analysis of “Werckmeister III” [2] is a good example of how well-
temperaments work (historically).  
 
There are four tempered 5ths (each flat by about 6¢), three of which lie in the 
“center” of the tuning (G/C, D/G, A/D). All other fifths are pure (3/2). For 
example, Bb/Eb = C#’/F# = 702¢. None of the thirds are “pure” (5/4). The 
“central” ones are “rather good” but too wide (e.g E/C = 390¢), and the 
“peripheral ones” (from the key of C around the circle of fifths) Pythagorean 
(Bb/F# = 406¢, roughly equivalent to the 81/64 Pythagorean 3rd, about 21¢ wide 
of the 5/4 just). 
 

“In such a tuning the central tonalities (with only a few or no sharps or 
flats) are rather good. The peripheral tonalities (with many sharps or flats) 
are not too bad, and tolerable, in any case. There is no clear distinction 
betwen ordinary and wolf intervals, like there is in mean-tone tuning. 
There are no wolves. All tones and intervals can be used enharmonically... 
With this tuning, Werckmeister has fulfilled his own demands to 
construct a tuning in which all tonalities could be performed without... the 
disturbing effects of wolf intervals” 
 

Note that the evaluation is based on 3rds and 5ths (intervals), as well as “centrality” 
(key). 
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Scale Evaluation Functions 
 
Based on how well the tempered intervals match ideal (just) 5ths and 3rds, Rasch 
develops a number of measures for WTs: 
 

1) the “mean tempering of a major triad ... the mean of the absolute 
values (in cents) of the temperings of the P5th, the M3rd, and the m3rd in 
the triad” 

2) the “mean tempering of a key... the weighted mean of the temperings 
of all triads” (triads are given successively lower weights starting from 
the tonic, and proceeding downward through the circle of fifths) 

3) the “mean tempering of a tuning... the mean tempering of all 
consonant intervals, ...equal to the mean tempering of all triads, or of 
all keys” 

 
Chalmers [3] uses the idea of “error” in his evaluation and creation of what 
he refers to as “linear temperaments” by the Method of Least Squares. 
Beginning with the just M3rd and P5th, he extends his method to other ratios, 
finding new tunings which are “optimized” MTs (MTs with minimized 
errors). Chalmers also points out that the design of the error function is 
independent of the particular ratios desired. “There are innumerable ways 
in which the error functions can be combined. Various means, arithmetic, 
harmonic, geometric, to name the simplest, may be used.” 
 
Both Chalmers and Rasch thus consider various temperaments as 
approximations, in some way, of ideal tunings. The error calculation (whatever 
that might specifically mean) is a first step towards designing a tuning which 
optimally fits some set of ratios, weights, and predefined error function. 
 



6/23/06  Polansky, OWT 

page 13 

Werckmeister III as a half-matrix 
 
One way to look at a scale is as a half-matrix of relationships. For n 
pitches, there are  
 

(n2 – n )/2  
 
possible intervals contained in the scale (the second order binomial 
coefficient, or the “half-matrix minus the diagonal”).  
 
This is almost equivalent to the circle representation of just intonation 
shown above, except that instead of connecting arrows between 
pitches (whose length corresponded to interval size), the size of the 
interval is written in the appropriate position in a pairwise 
relationship matrix. 
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W3 has 12 m2nds, 11 M2nds, 10 m3rds, and so on. Each diagonal 
represents one interval (this particular geometry is arbitary, intervals 
are given in cents). 
 

 C C# D Eb E F F# G Ab A Bb B C 
C  90 192 294 390 498 588 696 792 888 996 1092 1200 
C#   102 204 300 408 498 606 702 798 906 1002 1110 
D    102 198 306 396 504 600 696 804 900 1008 
Eb     96 204 294 402 498 594 702 798 906 
E      108 198 306 402 498 606 702 810 
F       90 198 294 390 498 594 702 
F#        108 204 300 408 504 612 
G         96 192 300 396 504 
G#          96 204 300 408 
A           108 204 312 
Bb            96 204 
B             108 

 
(The ½ matrix of W3) 



6/23/06  Polansky, OWT 

page 15 

 
What we would like (all good 3rds, good 5ths, good 4ths, but not 
possible!) (DC = don’t care!): 
 
 

 C C# D Eb E F F# G Ab A Bb B C 
C  DC DC DC 386 498 DC 702 DC DC DC DC 1200 
C#   DC DC DC 386 498 DC 702 DC DC DC DC 
D    DC DC DC 386 498 DC 702 DC DC DC 
Eb     DC DC DC 386 498 DC 702 DC DC 
E      DC DC DC 386 498 DC 702 DC 
F       DC DC DC 386 498 DC 702 
F#        DC DC DC 386 498 DC 
G         DC DC DC 386 504 
G#          DC DC DC 386 
A           DC DC DC 
Bb            DC DC 
B             DC 

 
(An “ideal” W3 ½ matrix) 
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From these representations of WT as a matrix (which is similar to the circle used 
for just intonation above), we can compute an error matrix, which tells us how far 
all actual intervals are from some notion of ideal interval. In the example below, 
just to simplify things, only the M2nds, M3rds, P4ths, and P5ths are considered. The 
entries in each column are the absolute error (in cents) for each occurrence of 
those intervals (where the ideal intervals, respectively, are 9/8, 5/4, 4/3, and 
3/2). 
 
Error Matrix (four intervals only) for WIII 

 C C# D Eb E F F# G Ab A Bb B C 
C  – 12 – 6 0 – 6 – – – – 1200 
C#   – 0 – 24 0 – 0 – – – – 
D    – 6 – 12 6 – 6 – – – 
Eb     – 0 – 18 0 – 0 – – 
E      – 6 – 18 0 – 0 – 
F       – 6 – 6 0 – 0 
F#        – 0 – 24 6 – 
G         – 12 – 12 6 
G#          – 0 – 24 
A           – 0 – 
Bb            – 0 
B             – 
              
 
The matrix shows how important the P5th is in W3 are (and the inversion), but 
that the M3rds tend to be a bit wider than just (in fact, they are closer to 
Pythagorean). But more importantly, perhaps, this error matrix suggests ways to 
evaluate a scale to some explicit criteria, and further, to create scales to conform to 
them. 
 
The sum of all the entries in this error matrix is essentially a measure of how well 
a scale fits some ideal set of criteria for that scale. In this case, those criteria are 
just four intervals and the repeat factor, with no weighting as to the importance of 
any of those intervals, nor to the keys in which they occur. By minimizing that 
error function, we can optimize that scale.  
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Part 2: Optimal Well-Temperament 
 
Statement of the problem as an error function on a constrained 
system 
 
The problem of developing a scale might thus be defined as the optimal solution 
to the following set of constraints:  

 
• some repeat factor ω (e.g., an octave) 
• some number of "desired" or ideal ratios I1, … In ( = 

(number of pitches) -1) for intervals (that is, all intervals 
between scale pitches) 

• some notion of relative importance for these intervals i1, 
… in (interval weights)  

• some notion of relative importance for “keys,” k1, … kn or 
the fixed pitches in the scale to which intervals are 
measured (key weights) 

• some fixed number of pitches n + 1 (e.g., a scale, which has 
one more pitches than the number of intervals) 

 
The error function E for a scale is a measure of how closely a given scale fits the definition 
of an ideal scale specified by the above criteria. 
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In simpler terms, we have a certain number of pitches (for 
example, we’re tuning a keyboard, or a génder); a few 
(abstract) intervals we consider important (P5th, M3rd, etc.). 
We also want certain “keys” or “pathets” or “tonal centers” 
or “whatever” to be in tune at the expense of other, less 
important “keys” (as we’ve seen, we can’t have it both 
ways). We want that scale to repeat at some interval (say, an 
octave).  
 
What is the best scale that we can come up with that 
optimizes its total network of intervallic relationships given 
that criteria? That scale, by defintion, will be the “best” scale 
for the given criteria. 
 
 


