Table 1. Our Current Set of 20 Simple Metrics Based On Zipf's Law

Metric Description

Pitch Rank-frequency distribution of the 128 MIDI pitches

Chromatic tone Rank-frequency distribution of the 12 chromatic tones

Duration Rank-frequency distribution of note durations (absolute duration in seconds)

Pitch duration
Chromatic-tone duration
Pitch distance

Chromatic-tone distance

Harmonic interval
Harmonic consonance

Melodic interval
Harmonic-melodic interval
Harmonic bigrams
Melodic bigrams

Melodic trigrams
Higher-order intervals

Rank-frequency distribution of pitch durations

Rank-frequency distribution of chromatic tone durations

Rank-frequency distribution of length of time intervals between note {pitch)
repetitions

Rank-frequency distribution of length of time intervals between note {chromatic
tone) repetitions

Rank-frequency distribution of harmonic intervals within chord

Rank-frequency distribution of harmonic intervals within chord based on music-
theoretic consonance

Rank-frequency distribution of melodic intervals within voice

Rank-frequency distribution of harmonic and melodic intervals

Rank-frequency distribution of adjacent harmonic interval pairs

Rank-frequency distribution of adjacent melodic interval pairs

Rank-frequency distribution of adjacent melodic interval triplets
Rank-frequency distribution of higher orders of melodic intervals; first-order met-

ric captures change between melodic intervals; second-order metric captures
change between first-order intervals, and so on up to sixth order

dom number generators: a white-noise (1/f°) source,
a pink-noise {1/f} source, and a brown-noise (1/f2)
source. They used independent random-number gen-
erators to control the duration (half, quarter, eighth)
and pitch (various standard scales) of successive
notes. Remarkably, the music obtained through the
pink-noise generators was much more pleasing to
most listeners. In particular, the white-noise genera-
tors produced music that was “too random,” whereas
the brown-noise generators produced music that was
“too correlated.” They noted, “Indeed the sophisti-
cation of this ‘1/f music’ (which was ‘just right’) ex-
tends far beyond what one might expect from such a
simple algorithm, suggesting that a ‘1/f noise’ (per-
haps that in nerve membranes?} may have an essen-
tial role in the creative process” (1975, p. 318).

John Elliot and Eric Atwell {2000) failed to find
Zipf distributions in notes extracted from audio sig-
nals. However, they used a small corpus of music
pieces and were looking only for ideal Zipf distribu-
tions. On the other hand, Kenneth Hsu and Andrew
Hsu {1991) found 1/f distributions in frequency in-
tervals of Bach and Mozart compositions. Finally,
Damidn Zanette found Zipf distributions in notes
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extracted from MIDI-encoded music. Moreover, he
used these distributions to demonstrate that as mu-
sic progresses, it creates a meaningful context similar
to the one found in human languages (see http://
xxx.arxiv.org/abs/cs.CL/0406015).

Zipf Metrics for Music

Currently, we have a set of 40 metrics based on
Zipf’s Law. They are separated into two categories:
simple metrics and fractal metrics.

Simple Metrics

Simple metrics measure the proportion of a particu-
lar parameter, such as pitch, globally. Table 1 shows
the complete set of simple metrics we currently
employ (Manaris et al. 2002). Obviously, there are
many other possibilities, including size of move-
ments, volume, timbre, tempo, and dynamics.

For instance, the harmonic consonance metric
operates on a histogram of harmonic intervals
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