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The mechanics of intervals (the language of ratios) 
 
The harmonic series as intonation “canon” 
Many authors, including Partch, cite the harmonic series as either an acoustical or 
mathematical motivation for simple just intonational systems. The intonations of 
integers-multiples of a given fundamental, in octave reduced form, form the basis for 
most (but not all) tuning systems, even in tempered variations.  
 
It is useful to memorize the harmonic series up to at least the first 16–17 harmonics —
both the approximate 12TET (12 tone equal-temperament) pitch values and the 
corresponding cents deviations from equal temperament.  
 
The following are the harmonic numbers with corresponding intervals and cents 
deviations from 12TET tuning underneath: 
 
Harmonic   1 2 3 4 5 6 7 8 
Interval   uni oct 5th oct 3rd 5th min7 oct 
Cents from 12-ET  +0 +0 +2 +0 -14 +2 -31 +0 
 
 
Harmonic   9 10 11 12 13 14 15 16 17 
Interval   9th 3rd tt 5th min6 min7 maj7 oct min2nd 
Cents from 12-ET  +4 -14 -49 +2 +41 -31 -12 +0 +5 
 
The “names” of the intervals (5th, 3rd, etc.) especially in the case of the 11th and 13th 
harmonic, are approximations of some nearby, cognate 12TET interval. 
 
Expressing a ratio between 1/1 and 2/1 (within one octave) 
Often (but not always), just intonation scale systems are octave reduced, and specified in 
simple form (numerator and denominator reduced by common factors). That is, ratios 
are most often expressed in the simplest form of the fraction, with the numerator and 
denominator relatively prime. Thus, 9/3 becomes 3/1, 10/6 becomes 5/3, and so on. 
 
But powers of 2 are also special, because they indicate octave relationships. Powers of 2 
are often a factor of the numerator and denominator, and they can be changed without 
changing the “interval class.” We often want to state a ratio, or interval, to be within an 
octave, in the following way: 
 1/1 ≥ p/q ≤ 2/1 
 
A simple procedure for reducing a ratio to it’s “smaller than octave” form is to multiply 
either the numerator or denominator by two until the fraction is within range, and then 
reduce the fraction to simplest form. Thus, 16/5 becomes 8/5, 12/3 becomes 4/3, and so 
on. 
 
Here’s an example of how to express a ratio to its simplest, octave reduced form: 
 

Example: 8/3 
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• Step 1: Is the numerator more than twice the denominator? (Yes): Multiply the 
denominator by 2 until it the numerator is less than twice the denominator 
(8/6). 

• Step 2: Reduce by common factors until the numbers are relatively prime (4/3) 
 
Example: 15/16 
• Step 1: Is the numerator less than the denominator? (Yes): Either divide the 

denominator by 2 (if possible), or multiply the numerator by 2: (15/8) 
• Step 2: Reduce by common factors until the numbers are relatively prime: 

(15/8)  
 

Note that the octave reduction process is equivalent to moving a ratio along the “2-axis” 
in harmonic space (in Tenney’s or Johnston’s terms). For this reason (something like 
“octave equivalence”), that axis is often omitted in representations. This is similar to 
talking about a P5th as being the same for many purposes as a P12th. 
 
Multiplying two ratios (adding two intervals) 
What is, in 12TET, a M3rd above a P5th? To answer that, we “add” the intervals and 
come up with a M7th. 
 
To add two ratios we multiply them together. In order to find out what is a P5th above a 
M3rd, we add the two intervals, multiplying their ratios. For example, to determine a 
septimal (has a factor of 7 in it) (7/6) m3rd above a P5th (3/2), multiply the two ratios, and 
then reduce to simple form (including, usually, octave reducing):  
 

Example: 7/6 * 3/2  
(a septimal m3rd above a P5th)  
Multiply the ratios together, reduce to relatively prime form, and then to within 

one octave: 
  21/12 = 7/4 (septimal m7th) (-31 from 12TET) 
 

Example: 9/5 * 5/3  
(just m7th above a just M6th) 

  45/15 = 3/1 = 3/2 (P5th) (+2 from 12TET) 
 

Example: 27/16 * 3/2  
(Pythagorean M6th above a just or Pythagorean P5th) 

  81/32 = 81/64 (Pythagorean M3rd) (+8 from 12TET, 
  +22 from 5/4 just M3rd, or the “comma”) 
 
[Note: By “Pythagorean,” we mean only the prime factor 3 (and of course, 2) is 
involved: all tuning is done by P5ths.] 
 
 
Dividing two ratios (subtracting one interval from another) 
To get a m7th below a M3rd in 12TET, we subtract one interval from the other (and get 
the tritone).  
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To subtract two ratios, we divide them. In order to find out what is a P5th below a M3rd, 
we subtract the two intervals, dividing their ratios. For example, to determine a 
septimal M2nd  (8/7) below a just M7th (15/8), divide the two ratios, and then reduce to 
simple form (including, usually, octave reducing).  
 
Note that arithmetically, dividing one ratio by another is the same as inverting the 
second ratio and multiplying:  

 
Example: 15/8 / 8/7 
(a large M2nd below a M7th) 
Invert the second ratio, multiply, and reduce as above 
15/8 * 7/8 = 105/64 M6th (-19 from 12TET) 
 
Note: This is a “narrow” M6th, because 8/7 is a wide M2nd. 

 
 

Determining the cents (¢) value of an interval, and determining what that interval 
“is” 
(quick and dirty method) 
 
Cents are a way to compare all intervals, just or not. 100 cents (100¢) is a 12TET m2nd. 
1200¢ is an octave. Although there is, of course, a kind of “western” bias in this choice 
of measurement, it can also be thought of as an aesthetically neutral system that simply 
determines the width of an interval in pitch (not frequency) space, and allows us to 
compare two intervals. 
 
Method 1 (expert system approach): Go on the web, use a simple computer program, 
consult either the Partch table at the end of Genesis ... the Chalmers “Table of 1200 Tone 
Equal Temperament,” or any one of a number of such charts.  
 
The cents value of a frequency ratio is: 
 ¢ = 1200 * log2(a/b) 
 
— where r is some ratio, generally in reduced form. For convenience, cents values are 
often rounded to the nearest cent. For example,  
 
 3/2 = 702¢ 
 
Method 2 (wetware-based artificial intelligence approach): Doing it quickly in your head 
(amaze your friends): 
 

Example: 75/54 (what is it? how wide is it?) 
Step 1: Reduce the numerator and denominator to relative prime 
form, and then determine the prime factors: 
  
 75 = 5 * 5 * 3 
 54 = 3 * 3 * 3 * 2 
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One set of three's cancel, so 75/54 = 25/18. You could (and should) 
have done that first. Thus we have 5 * 5 on top, and 3 * 3 * 2 on the 
bottom.  
 
Step 2: Add up the cents deviations for each prime from the 
harmonic series in the numerator. 
 
 -14 + -14 = -28 

 
 
Step 3: Add up the cents deviations for each prime from the 
harmonic series in the denominator, reversing their sign. 
  
 -2 + -2 + 0 = -4 
 
Step 4: Determine, approximately, what "note" the numerator refers 
to (simply by associating simple intervals with primes, and let’s 
assume 1/1 = C for the purposes of this example): 
  
 5 x 5 = “third” above a “third” = +5th  = G#  
 
Step 5: Determine, approximately, what "note" the denominator 
refers to: 
  
 3 x 3 two fifths = M2nd = D 
 
Step 6: What "interval" does the whole ratio (approximately) refer 
to: 
  
 + 5th above a M2nd  = tritone (D-G#) 
 
Step 7: To get the cents deviation from the nearest 12TET interval, 
add the cents deviation of the numerator to the (sign reversed) 
denominator: 
  
 -28 + -4 = -32 
 
Therefore, the ratio 75/64 is a tritone  -32¢ flat of 12TET (Note that 
simply knowing, for instance, with the note "C" as the fundamental, 
the 25th harmonic is a +5th  and the 18th  harmonic is a M2nd, give 
you the interval right away!). 
 

Digression 1: An interesting method for learning tunings was suggested (and often used) 
by Lou Harrison: using a simple just intonation as the canonical tuning from which to 
deviate. In other words, the Pythagorean 27/16 major 6th, which is 6¢ sharp of 12TET, 
would be considered +22¢ sharp of the “canonical” 5/3 (just, 5-limit) major 6th (the 
famous commatic difference between just and Pythagorean tuning). 
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Digression 2: A simple vector notation for intervals is, for example, [002] for 25, 
[12] for 18, where each place in the vector is a count of the number of occurrences 
of a prime (the exponent of each prime in the factorization), starting with 2, then 
3, 5, 7, 11, ... To represent a ratio in this way, use minuses for occurrence of 
factors in the denominator, positives for the numerator. Thus 25/18 = [-1-22]. 
This is a computationally valuable and unique vector representation of all 
fractions, and, while equivalent to other forms, allows for some interesting 
manipulation in determining things like “consonance” and “dissonance.” 
 
Some common scales, tuning schemes and principles 
 
A simple Pythagorean sequence  
Pythagorean tunings use only ratios involving 3 and 2. Partch refers to them as 3-limit 
tunings, Tenney/Johnston call them as 2,3-space. Their “prime vectors” only have two 
places. 
 

Expressed in the key of C: 
 
1/1(C+0)   3/2(G+2)     9/8(D+4)   27/16(A+6) 
 
 81/64(E+8)   243/128(B+10)   729/512(F#+12) ... 
 

Note that this sequence is “cyclic,” no sequence of 3/2’s ever yields a 2/1, so 
Pythagorean tunings must somehow adjust for the octave (another type of comma, the 
Pythagorean one, the distance between 2/1 and 531441/524288, about 24¢, or the sum 
of 12 3/2’s (each adds 2¢). 
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THE PYTHAGOREAN COMMA 

 

The Pythagorean comma results from the “circle of fifths,” when those intervals are tuned 

as the ratio 3/2. Compounding 5
th

s (C-G-D-A-E-B-F#-C#-G#-D#-A#-F(E#)-C) will never 

result in an in-tune octave (2/1). This is the simplest example of the “historical tuning 

problem.” In the illustration above the difference between the compounded 3/2 5
th

s are 

solid dots, connected by arrows showing the direction of the tuning. Open circles are the 

corresponding equal-tempered 5
th

s. Each 3/2 5
th

 adds 2¢ to the difference between these 

intervals, culminating in the 24¢ comma shown by the red dot when the tuning comes full 

circle. 
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Remember again, no number raised to a prime power can ever equal another number 
raised to a different prime power (The Diophantine equation: pn ≠ qm for any two primes 
p, q, and any integers n, m). Any system which includes more than one prime (even, as 
in Pythagorean tuning, 2 and 3!) will never be “in tune” in that certain simple intervals 
will always “conflict” with other simple intervals. If that conflict occurs in the simple 
({3, 5}, or “5-limit” just scale, it’s usually called the “wolf fifth.” It is a more general 
phenomenon, however. I call it the “canidae” interval (genus, not species). It is also 
sometimes referred to, informally, as the “historical tuning problem.” 

    
The Syntonic comma 
The difference between the 5/4 M3rd and the 81/64 Pythagorean M3rd is one of the most 
important engines in the evolution of tuning systems. Put simply, it’s hard to have 
(simultaneously) good 5ths and good 3rds (see the section on the wolf-fifth below) if only 
a rational tuning is employed, because of the conflict of primes. Comma relationships 
(the syntonic comma is the comma) are often notated with a “–” or “+” sign (as in Ben 
Johnston’s notational system): 

 81/64 / 5/4 = 81/80 = 22¢ (app.) 
 
A standard Just diatonic (absolute ratios); 5-limit (Ptolemy's Syntonon Diatonic) 
With cents deviations from 12TET underneath each ratio: 
 
 1/1 9/8 5/4 4/3 3/2 5/3 15/8 2/1 
 +0 +4 -14 -2 +2 -16 -12 +0 
 
This scale is often simply referred to as the “just scale,” though 10/9 may often be 
substituted for 9/8 in simple just scales. 
 
A simple just diatonic (adjacent ratios); 5-limit (adjacency ratios for Syntonon 
Diatonic) 
 1/1 9/8 10/9 16/15 9/8 10/9 9/8 16/15 
 
This scale is the same as the one above, but expressed as adjacency intervals rather than 
as ratios from 1/1. That is, we are describing the scale as “M2nd M2nd m2nd M2nd ….” 
Instead of “M2nd M3rd P4th P5th … “ As in 12TET we can reckon intervals to other 
intervals, or to some fixed 1/1 (fundamental). We freely go between those 
representations, depending on context.  
 
Using adjacency intervals emphasizes the melodic. Lou Harrison often preferred this 
method of elucidating scales, and uses it in for the majority of the scales in his Music 
Primer (as well as his remarkable slendro and pelog tunings in Gamelan Si Darius/Si 
Madeleine). It also more closely represents his idea of “free-style.” 
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Si Darius and Si Madeleine, Mills College, 1981 
(Adjacent intervals, ratios, and cents values of intervals) 
 
slendro (Darius)  
5-6 (8:7)   6-1 (7:6)   1-2 (8:7)   2-3 (8:7)   3-5 (7:6)  
231¢   267¢   204¢   231¢    267¢ 
 
pelog (Madeleine):  
1-2 (13:12)  2-3 (14:13)  3-4 (17:14)  4-5(18:17)  5-6(19:18)   6-7 (21:19)  7-1 (8:7) 
139¢    128¢     336¢    99¢     94¢     173¢     231¢  
 
 
The wolf-fifth (on the supertonic) 
The usual example for the “historical tuning problem” in just intonation involves the 
problem between tuning scale degrees 2, 3, and 6, since there is a 5th between 2 and 6, 
and from 6 up to 3. The problem is the basic conflict between 3- and 5-limit tuning 
systems, and could be said to have been the motivation for the long history of 
“compromise” tunings (meantones, well-temperaments, and finally, 12TET). These 
tunings “temper” interval so as to distribute the comma, or error. 
 
There are many other possible instances of this kind of cross-tuning difficulty. The 
problem is the “collision” between scale systems of different limits, not just 3- and 5-. In 
much of twentieth-century music, like that of James Tenney, Carter Scholz, and others, 
this has become a feature rather than a bug. 
 
The following is a simple explanation of the wolf-fifth: 
 

If the 2nd of a simple diatonic just scale is tuned as 9/8, and the 6th as 5/3, 
then 5/3 / 9/8 = 40/27 (20 cents flat of a 3/2!), the infamous wolf-fifth (on 
the supertonic). That is, the P5th between the 2nd and 6th degrees, necessary, 
for example, in the supertonic triad, is “out of tune.” However, the 5th from a 
5/3 up to 5/4, on the submediant, is "good" (read: 3/2). Conversely, if the 6th 
degree is tuned to Pythagorean 27/16, and the 3rd to 5/4, then the same 
situation arises in the 5th above the submediant (27/16 / 5/4 = 27/20), the 
P4th which is the inversion of the 40/27). 
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 C 

(1/1) 

D 

(9/8) 

E 

(5/4) 

F 

(4/3) 

G 

(3/2) 

A 

(5/3) 

B 

(15/8) 

C 

(2/1) 

C  9/8 5/4 4/3 3/2 5/3 15/8 2/1 

D   10/9 32/27 4/3 40/27 35/18 16/9 

E    16/15 6/5 4/3 3/2 8/5 

F     9/8 5/4 45/32 3/2 
G      10/9 5/4 4/3 

A       9/8 6/5 

B        16/15 

 

½ Matrix of Diatonic Just Intonation Scale 

 

Every scale can be represented as a matrix of relationships between each degree of the 

scale and all others. This half-matrix shows those relationships in the historic Just 

Diatonic scale described above. Intervals are given as ratios between each interval and all 

others. 5
th

s are in bold. The “wolf” 5
th

 is the interval 40/27 between the 2
nd

 and 6
th

 scale 

degree — the only “impure” P5
th

 in the scale. Note that all M3
rd

s (C-E, F-A, G-B) are 

“pure” intervals of 5/4. 

 

 

 
 
A simple just chromatic (adjacent ratios); 5-limit 
Much of the following scale is derived from intervallic inversions of the standard 5-limit 
just scale. For example, 16/15 (the m2nd to the tonic) is the same as the interval between 
the 7th and 8th degrees of the Sytonon just scale above. 
 
 1/1 16/15 9/8 6/5 5/4 4/3 ?? 3/2 8/5 5/3 9/5 15/8 2/1
  
(Note that there is no readily available 5-limit tritone (25/18, 36/25)). Some of the 
simpler just tritones, invoking 7- and 11-limits are 10/7, 7/5, and 11/8 (all very 
different of course). Note the preference in this scale for superparticular ratios (where the 
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numerator = denominator +1) and the smallest possible numbers. These are often called 
epimores, and are a favorite harmonic idea of many composers. 
 
I have deliberately used the two superparticular 5-limit major seconds here (9/8 for the 
2nd degree, and 10/9 below the 2/1, or 9/5, for the minor seventh), and of course 10/9 
and 16/9 could be substituted just as well, depending on what kinds of fifths were 
required (in fact, the above scale has a “bad” supertonic 5th, remedied by either 10/9 for 
the 2nd degree, or 27/16 for the 6th). 
 
A 7-limit extended chromatic scale 
Septimal scales are quite common throughout the world, but this one is simply “made 
up” to illustrate common septimal intervals. 
 

1/1 21/20 8/7 7/6 5/4 4/3 10/7 3/2 5/3 12/7 7/4 40/21  
 
This scale actually has two “major sixths” (the 12/7 is 33¢ wide of 12TET, the 5/3 16¢ 
narrow). Note the 3/2 between 8/7 (2) and 12/7 (6), 7/6 and 7/4, 10/7 and 21/20, etc. 
Note also the similar problems with “limit collision”: the mediant P5th (3-7) is: 
 

40/21 / 5/4 = 32/21  
 

(29¢ sharp of the 12TET P5th, 27¢ sharp of 3/2). 
 
A fanciful 11-limit extended chromatic scale 
This is similar to the septimal construction above in that the main “generators” of this 
scale are simple 1:5:3 (or 4:5:6, which is the same thing) triads constructed above the 11-
limit, in what Partch calls “otonality,” as opposed to the “minor triad,” or descending 
construction (down a 5/4 then down a 6/5), which he calls a “utonality.” In other 
words, the scale below uses the 4:5:6 triad idea through the primes 7 and 11 (with the 
notable absence of the 99/64, a wide P5th, which is just a 9/8 M2nd  on the 11/8 
“tritone”). 
 

1/1 33/32 12/11 77/64 14/11 4/3 11/8 3/2 11/7 128/77 11/6 64/33  
 
As a difficult exercise, write this scale as adjacency intervals! 
 
Well-temperament 
Perhaps among the most interesting set of tuning systems are those which approximate 
some set of ideal intervals (like just ratios) in the context of a fixed set of pitches, keys, 
etc. These can be referred to as well-temperaments, though that term has a more specific 
historical meaning in western art music. But a general interpretation of the term could 
include meantone tunings, slendro and pelog, many other world music systems, and in 
fact, equal temperament itself.  
 
In well-temperaments, ideal tunings (often, historically, 5/4 thirds and 3/2 fifths) are 
approximated by most or all of the respective scale degree intervals. Few or none of the 
intervals are exact. These tunings may be thought of as techniques for fitting a fixed 
number of pitches to a fixed set of tuning relationships.  
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UP TO HERE… 
Historically, meantone temperaments preserve relationships exactly for a few intervals, 
and compromise others by a fixed amount (1/4 comma, 1/5 comma, 1/6 comma, and 
others). Well-temperaments usually have few (if any) exact ideal intervals — the “error” 
is distributed over the entire set. Consequently, well-temperaments are thought to be 
more in tune for a greater number of musical keys than meantones, which are usually 
“good” for some keys, and “less good” for others.  
 
Werckmeister III 
Rasch’s description and analysis of “Werckmeister III” (W3) is a good example of how 
well-temperaments work (historically). This tuning is often thought to be one of the 
major advances in historical tunings, and possibly the one intended by Bach in the WTC 
(Kirnberger was another historical tuning theorist who is a possibility here, and Young 
2 is another late well-temperament which is thought to as good as W3).  
 
The tuning is (rounded to the nearest cent): 
 

C# 90¢ 
D 192¢ 
Eb 294¢ 
E 390¢ 
F 498¢ 
F# 588¢ 
G 696¢ 
G# 792¢ 
A 888¢ 
Bb 996¢ 
B 1092¢ 
C 1200¢ 

 
Oddly, the “best” key in W3, by at least one common measure, is F. According to Rasch, 
there are four tempered 5ths (each flat by about 6¢), three of which lie in the “center” of 
the tuning (G/C, D/G, A/D). All other 5ths are pure (3/2). For example, Bb/Eb = 
C#’/F# = 702¢. None of the 3rds are “pure” (5/4). The “central” ones are “rather good” 
but two wide (e.g E/C = 390¢), and the “peripheral ones” (from the key of C around the 
circle of fifths) Pythagorean (Bb/F# = 406¢, roughly equivalent to the 81/64 
Pythagorean 3rd, about 21¢ wide of the 5/4 just). 
 

“In such a tuning the central tonalities (with only a few or no sharps or flats) are 
rather good. The peripheral tonalities (with many sharps or flats) are not too bad, 
and tolerable, in any case. There is no clear distinction betwen ordinary and wolf 
intervals, like there is in meantone tuning. There are no wolves. All tones and 
intervals can be used enharmonically... With this tuning, Werckmeister has 
fulfilled his own demands to construct a tuning in which all tonalities could be 
performed without... the disturbing effects of wolf intervals” 
 

Note that the evaluation is based on the 3rds and 5ths (and by consequence, triads), 
which can be shown in the following way (the larger, bold intervals — the complete 
network of W3 intervals is also shown by this half-matrix): 
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 C C# D Eb E F F# G Ab A Bb B C 
C  90 192 294 390 498 588 696 792 888 996 1092 1200 
C#   102 204 300 408 498 606 702 798 906 1002 1110 
D    102 198 306 396 504 600 696 804 900 1008 
Eb     96 204 294 402 498 594 702 798 906 
E      108 198 306 402 498 606 702 810 

F       90 198 294 390 498 594 702 
F#        108 204 300 408 504 612 
G         96 192 300 396 504 
G#          96 204 300 408 
A           108 204 312 
Bb            96 204 

B             108 

 
(Note that the diagonals are intervals, the rows and colums “keys”). 
 
Based on the idea of how well the tempered intervals match just 5ths and 3rds, Rasch 
develops a number of measures for well-temperaments, including: 
 

1) the “mean tempering of a major triad...the mean of the absolute values (in cents) 
of the temperings of the fifth, the major third, and the minor third in the triad” 

2) the “mean tempering of a key... the weighted mean of the temperings of all 
triads” (triads are given successively lower weights starting from the tonic, and 
proceeding downward through the circle of fifths) 

3) the “mean tempering of a tuning... the mean tempering of all consonant intervals, 
...equal to the mean tempering of all triads, or of all keys” 

 
Chalmers also uses the idea of “error” in his evaluation and creation of what he refers to 
as “linear temperaments” by the Method of Least Squares. Beginning with the just M3rd 
and P5th, he later extends his method to other ratios, finding new tunings which are 
“optimized” meantones (meantones with minimized errors). Chalmers also points out 
that the design of the error function is independent of the particular ratios desired. 
“There are innumerable ways in which the error functions can be combined. Various 
means, arithmetic, harmonic, geometric, to name the simplest, may be used.” 
 
Both Chalmers and Rasch thus consider various temperaments as approximations, in 
some way, of ideal tunings. The error calculation (whatever that might specifically 
mean) is a first step towards designing a tuning which optimally fits some set of ratios, 
weights, and predefined error function.  
 
These ideas are later explored by Polansky, Rockmore, Johnson, Repetto, and Pan “A 
Mathematical Model for Optimal Tuning Systems,” Perspectives of New Music, 47/1:69-
110. Winter, 2009. By establishing a simple set of cultural and perceptual criteria for 
scale formation, this article explores the natural evolution of tuning systems via a 
mathematical model. One of this article’s underlying assertions is that well-
temperament can serve as a model for all tunings, not just western historical ones. 
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Harmonic Distance Functions 
Many theorists have attempted to devise functions which measure, in some explainable 
way, relative consonance of intervals. These functions usually have three criteria: 
 

1) smallness of the numbers 
2) smallness of primes and prime powers 
3) number of distinct factors 
 

In other words, such a function typically finds 3/2 more consonant than 5/4, 5/4 than 
7/6, but has some trouble distinguishing between, for example 10/8 and 9/8 (both 
major seconds, one with a higher prime power of 32, the other with a higher prime in 
the numerator). 
 
Tenney’s HD function, in one of its simplest forms, is perhaps the most direct. It is 
  

HD(a/b) = log(ab) 
 

—where a/b is a relatively prime, octave reduced ratio. Chalmers describes this as a 
“special case of the Minkowski metric in a tonal space where the units along each of the 
axes are the logarithms of prime numbers.” Note that log(ab) = log(a) + log(b), showing 
the Minkowski-nature of this metric. Tenney’s function is closely related to his concept 
of “harmonic space,” which is similar to the Johnston lattice, and other such graphic 
models of rational tunings. 
 
The following chart shows a simple plot of Tenney’s HD functions for a number of 
simple just ratios within the 2:1. 
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Tenney HD function
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Other functions like this are Barlow’s harmonicity and digestibility functions (described in 
his 1987 Computer Music Journal article), and the Euler GS (gradus suavitatis) function.  
 
The Euler function is especially important, because of its simplicity, computability, and 
power. It yields similar results to the Tenney HD, and is defined as follows: 
 

• the GS of a prime number is itself 
• the GS of a composite number is the sum of the GSs of the prime factors, minus 

one less than the number of factors 
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In other words, the GS of 3 is 3. The GS of 9 is 6 – (2-1) = 5. The GS of 45 (= 5*3*3) = 5 + 3 
+ 3 - 2 = 9. 
 
GS values for ratios are treated similarly. 3/2 is 3 + 2 -1 = 4; 9/8 = 3*3/2*2*2 = 6 + 6 - 4 = 
8; GS of 5/4 is 5 + 2 + 2 - 2 = 9 - 2 = 7, etc. The GS is only taken on relatively prime 
ratios. One interesting feature of the GS is that it emphasizes, in its construction, the 
criteria outlined above for harmonic distance functions in general (as does the Barlo 
function, but this is much more complicated to compute). One unusual aspect of the 
Tenney function, since it does not really factor “primeness” explicitly in its measure, is 
that it finds the M6th to have a slightly smaller distance than the M3rd, whereas the GS 
functions finds them equal (7, though the GS has a coarser resolution). 
 
 
LP 
revision 4/11/19 
  


