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Abstract This paper is an introduction to a class of algorithms for melodic, formal and
timbral based transformation using mutation functions. These functions use formalized .
morphological metrics, or distance functions on morphologies (e.g shapes, motives, mélodiés,
waveforms, or any sets of ordered data). The mathematical/musical parameters of these
functions are presented formally, along with applications to melodic transformation' and cross-
synthesis, called mutation synthesis, which uses these functxons to modulate one waveform
into another along the time and frequency domains.

Generol Introduction

Thae concepts of distance and similarity

are findamental to a discussion of form. In order

to deside, at the very least, if two objects are
- distinct; a concept of similarity is needed.

Measuring. distance in musical morphologies
{melodies, duration sequences, shapes in other
parameters, and large scale forms) is difficult, since
severil aspects of musical morphology must be
taken into account, including, but not limited to:
contour, intervallic magnitude, combinatoriality
(that i5, how much interrelationship of component
parts  consider), and aspects of invariance under
certain transformations. Polansky (1987) has
outlined several simple distance functions, called
morphological metrics, which attempt to isolate
several factors of similarity,

By making the idea of metrics generative,
rather than analytic, we develop simple
transformations, called morphological mutations,
which yield interesting and fertile procedures for
"eross-fading” one morphology into another along

perceptual axes. These functions have an implied
distance function, called the index, which can be- -

thought of as an inverse metric.

Introduction to Mutation Functions
Mutation functions are of the general fonn
AS.T.2) =M '
where § is a source morphology {melody, duration
sequence, ordeted set of samples, etc.), T is a rarget

morphology, M is the resultant mutant, and £2 is

some value between O and 1. Intermediate values
for 2 yield morphologies
morphological characteristics (depending on the

mutation function) somewhere betwéen the source .

and target {McKinney, 19911].
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which have

Although each mutation function "cross-fades"
§ into T through M, they do so in different ways,
and there are several mutation parameters. which
determine the trajectory of the mutation and, more
importantly, what morphological property of S and
T is used for the transformation. As a simple
example, a pure contour mutation with £2'= 1 will
yield a morphology that is only identical to T in
contour (direction of mtervals) In other words a
contour muotation with Q2 =1 w111 produce. a
morphology T for which:

dTr)=0

under some metric function d with a well- dcf'med
notion of coniour [Polansky, 1987], [Polansky and
Bassem 1990]. . :

Types of Mutation

Several classes of mutation are developed based
upon aspects of morphology: order, interval
contour, interval magnitude, and linearity vs.
combinatoriality of intervals. Contour mutations
transform. the source ‘into the target solely. on the
basis of interval direction (or sign). Magnitude
mutations use the interval magnitude, signed or
unsigned (the former is a combination of magnitude
and contour).

Figure 1a shows.a four element morphology
with different contours .between each pair of
successive elements: the contour between-elements
A and B is positive (+1); the contour between
elements B and C is null (0); and the contour
between elements C and D is negative (-1). In
Figure 1a, we are only considering what Polansky
has called linear contour [Polansky.and Bassein,

-1990], [Polansky, 1987, the relationships between

adjacent elements of a morphology.
Interval magnitude is the absolute- magnitude
difference between two elements in a morphology.
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Figure 1. a} A sample morphology illustrating the notions of interval sign and interval magnitude. b)
Contour Mutation with an index of 0.5 and clumping value of 0.0. :

In Figure 1a, the interval magnitude between points

_Aand B is 1.0, between points B and Cis 0.0, and

between points C and D is 0.5.

For more information on the associated metrics
for these functions see [Polansky, 1987]. The
actual interval function, called 4, may be
completely general, and defined specifically for a
given parameter. For example, it can be
arithmetic, ratiometric, or'even as simple as "equal
to or not." All of the mutation equations helow can
be rewritten to incorporate this more general notion

of the interval A between two elements of a .

morphology (a detailed exploration of this is
beyond the scope of this paper).

The mutation index, £2, functions as a kind of
*knob" in these mutations. In timbral mutations,
0 becomes the actual index of modulation, and can
be a time-varying function (at audio or sub-audio
rates), a real-time input, a constant, 2 sample itself,
or a simple lookup table (like a ramp or sinusoid).

‘Contour Mutations

The contour mutation function mutates a
percentage of the intervals of a source morphology
by assigning the contour of the respective interval
in the target morphology to the interval magnitude
of the source. The index determines what percentage
of source intervals, that differ in contour from their
respective target intervals, get mutated (take on the
contour of the target). By only considering
respective intervals from the source and target that
differ in sign, the index of the mutation becomes a
linear and exhaustive "measure” of the metric space
between the source and the target. A contour
mutation with an index of 0.0 would produce a
mutant identical to the source. With an index of
1.0, the mutant would have all of the interval
magnitudes of the source and the interval signs of
the target. Note that the above only describes a
linear contour mutation, in other words, not all of
the contour relationships between all elements of
the morphology are considered (like, for example,
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the contour relationship between the 2nd gpg sth
elements).

Clumping .

Although the index in the contour mutation
function determines what percentage of intervals get
mutated, it does not determine exactly which
intervals get mutated for a given mutation. There
are many ways the mutated intervals can be
distributed throughout the resultant morphology.
'So far we have éxperimented with the use of a fixed
clumping value, 9, and stochastic clumping.

The clumping value @ of a mutation function
determines what percentage of the mutated intervals
are mutated consecutively. @ ranges from 0.0 to
1.0: a value of 0.0 spreads the mutated intervals
uniformly across the mutated morphology and a
value of 1.0 groups all of the mutated intervals into
one clump of mutated intervals. For example, with
Q = 05 and @ = 1.0, the first half of the
morphology would be mutated (clumping is as
high as possible), the second half left unchanged.

With stochastic clumping, each interval in the
source with a different contour than its respective
interval in the target-is selected to be mutated with
a probability equal to the index. Thus, for two
morphologies, successive mutations using
stochastic clumping and the same index could (and
probably will) result in different mutation
morphologies, creating a different trajectory of
mutation.

Clumping is critical in using mutation
functions to go from one morphology to another
by varying index. If stochastic ¢lumping is used, it
is possible that the perception of the linear
progression of mutant morphologies will be less
evident than if the same clumping value is used
throughout the progression, as there could be much
variation in the order of mutated intervals.

Contour Mutation

The simple linear contour mutation function is
as follows:
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{Ti -Ti-1)
M;: = M; *
i =Ml * T
For mutated intervals, and
M= M + (Si- Si.1)
£or non-mutated intervals, for all M;e M,all§; €

[8i - Si-if

S,and all T; € T assuming the source §, the target.

T and the mutant M are all equal length
morphologies (we will assume these conditions for
all equations below unless otherwise stated) and
where the index £ and the clumping value J.
determine whether the interval will be mutated as
described above. Figure Ib shows the contour
. pusation, with £ = 0.5 and d = 0.0, on. two simple
contours. Since d = 0.0, the mutated intervals are
spread evenly throughout the contour, and every
second interval is mutated starting with the first
interval. '

Magnitude Mutations
Regularity '

Mutation functions that operate on the interval
magnitude can have one of two types of indexes. A
Uniform index mutates all interval magnitudes of
the source by a percentage of the difference of the

 source interval magnitudes and the target interval
magnitudes. The index determines the percentage
of the difference. Thus the mutation interval
magnitude, Miny, 18 calculated by:

Mint = Sint + index * (Tint - Sint)

- where Sy is the respective source interval
magnitude and Tip is the respective target interval
miagnitude. Figure 2a shows an Interval Magnitude

mutation, with a Uniform index of 0.5, of two.

simple morphologies. Each interval magnitude in
the mutant is one half of the difference of the

respective interval magnitudes in the source and

target.. -

An Irregular index mutates a perceniage of the
source interval magnitudes by applying the full
target interval magnitude of the target's respective
interval. The index de}emines what-percentage of

b

the mutant's intervals assume the target's interval
magnitude. The rest of the mutants intervals keep
the source's interval magnitudes. Figure 2b shows
an Interval Magnitude'mutation, with an Trregular

index of 0.3, of two sinple morphologies. In this

example, every second interval ‘nagnitude is the
same ‘as the source, starting with the first one, and

_ every interval magnitude between those is the same

as the target. The mutated intervals (mutated
intervals refer to the intervals in the mutant that
have the target's respective interval magnitude) are
spread-evenly throughout the mutaat. Clumping,
as described above, is used to distribute the mutated
intervals. I

The Contour Mutation only uses an Irregular
index — contour mutation of a specific jnterval is
an all or none operation. The distinction between
Uniform and Irregular indexes is the quality of the
index. .
Signed :and Unsigned Mutations -

Mutation functions -are also classified by
whether or not they operate on the interval sign of
the morphology. ‘The Contour Miitation: function
is inherently signed. Mutation functions that
operate on the interval magnitude, however, can be
Signed or Unsigned. A Signed mutation fanction
gives the mutated interval the sign (or.contour) of
the respective target interval and an Unsigned
mutation function gives the mutated interval the
sign (or contour) of the respective source interval.

Some Magnitude mutations. .
Four magnitude mutations are defined based on
the two characteristics just described: :
1) Uniform Signed Interval Magnitude Mutation
(Absolute Magnitude M utation)
2) Irregular Signed I nterval Magnitude Mulation
3) Uniform Unsigned Interval Magnitude Miitation
4) Irregular Unsigned Interval Magnitude Mutation

3

N\ A

‘Targst

Source

a) |

Muisnt

“h)

Figure 2. a) Interval Magnitudé Mutation with a Uniform index of 0.5. b} Interval Magnitude Mutau’bn

with an Irregular index of 0.5.
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Uniform Signed Interval Magnitﬁde M: = M; (Si-Si-l) &
Mutation (USIM) {or The Absolute P "1+/S;-Si.1[

Magnitude Mutation - AM) Si-Spgf + 0" Ti-Tipf - 1Si - Si- ?
The Absolute Magnitude mutation’ mutates ( 15i - Siclf (T Tit] = 5 w1 )f)

Note that:
absolute values of the source and target elements; (S; - Si-])
cather than intervals. This is essentially the same —————L‘I S'- il
as the USIM if the first value of the source andthe . . "} i-1 . .
target are the same. The function is: . is just the sign of the source interval. ,
M;= S+ Q*(Ti- ) Figure 4a shows the UUIM, with 2 = 0.5.

This mutation is a simple crossfade between Each }nt;erval has an absolute magnitude that is half
ihe source and target. Figure 3a shows the AM way m'bet'wcen thc_absolutz magnitudes of the
L afion, with 2 = 0.5. Each element (poind) in respective intervals in the sQuIce and the target.
_ the mutant is half way between the respective Each interval has th‘.?' same sign as the SOUrce. .

elements in the source and target. . Irregular Unsigned Inte

A . Mutation QUIM) . ‘
ﬁ:ﬁgg};{ (ISSII%JI‘; d .Interval Magnitude _ The JUIM mutates a percentage of tpe source
~ The ISIM is the same as'the Absolute 'n}tcrvals (determined by the index) by assigung the
Magnitude mutation but the ISIM has an [ rregular - s;]gn of the source and the c:_lmple;c magnitude :xf\
index. As in the USIM, since the mutant intérvals the re:{Jecu\fe target mgcdr; to the matant. 1
contain the sign and interval magnitude of the Interve that is ot mutat B eeps IS sﬂ(.:prce mterva
target, when the index is 1.0, the mutant is the magnitude and sign. ecause this mutation

rval Magnitude

el function has an Irregular index, a clumping value J
target. The function is. . Soar . .
M = Mip £ (Ti Ty.1) for mutate d intervals c&?;err!:r;gzi the distribution of mutated intervals in
M;=Mii+(Si- Si.1) for: non-mutated intervals The u.nctio 1 is:
where the index €2 and the clumping value J ‘ (8i-Sip)
determine whether the interval will be mutated in M; = M| +—-S—‘—-§'-—‘ *T; - Till
one of the several manners described above: . /8- Si1f
Figure 3b shows the ISIM, with 2 = 0.5 and for mutated intervals, and
3= 0.0. Since @ = 0.0, the mutated intervals are M; = Mi.p + (i - Si-1)

. spread evenly throughout the contour, and every for non-mutated intervals, where the index (2and
second interval is mutated, starting with the first the clumping value ¢ determine whether the
interval. ‘ interval will be mutated in one of the several
manners described above. . -
Uniform Unsigned Interval Magnitude Figure 4b shows the JUIM, with Q = 0.5 and
Mutation (UUIM) i . 3=00. Since d = 0.0, the mutated intervals are

The UUIM applies the source inerval signtoa  spread evenly throughout the contour, and every
percentage difference (depending on the index) of the  second interval is mutated starting with the first
source and target interval magnimdes. interval.

The function is: A o
Mutation Function Relationships
_ An important relationship is that of the
contour mutation to the Unsigned. Interval

s

" a) b)

Figure 3. a) AM M utation with an index of 05 b) ISIM Mutation with an index of 0.5 and clumping
value of 0.0. ISIM Mutation with an index of 0.5 and clumping value of 0.0.
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b value of 0.0.

Magritude mutation functions. These are

mutually exclusive and, with indexes of 1.0, are
b= collectively exhaustive of the metric space they
E" define. A contour mutation with an index of 1.0

followed by an Unsigned Interval Magnitude

b (U niferm ot Irregular index) with an index of 1.0

using the output of the contour mutation as the
source and the original target as the target, yiglds a
muitant that is idéntical to the target. Figure 5 is
an example. of this combination of mutation
functions on two simple contours. The resulting
mutant has the contour of the target in the first
mutation and the interval magnitudes of the target
in the second. Thus, combining these mutations,
in either order, provides a means for progressing
from a source morphology to a target. Using time
varying indexes, modifying the way they approach
1.0, and by altering J, one can create different
trajectories for the mutation (see also Figure 6).
The mutation will, however, always become the
target when both of the indexes are 1.0

Mutation Synthesis

The authors have applied the mutation
functions to digital sound samples, in both the
time and frequency domain...Because the mutation
functions are non-linear, it is difficult to predict

-what the output (mQLant) will sound like or

describe its frequency content (a typical method for
analyzing sound), This suggests an experimental
and exhaustive approach to applying the mutation
functions to digital sound and.evaluating the output
aurally. The mutation functions were coded in Con
4 NeXT™ Computer and designed to operate on
sounds of the NeXT sound file format [McKinney,
1991). '

Tifne Domain

Sounds are mutated in the time domain with
the functions describe above by treating a sound as
a morphology and its individual sample values
(discrete points of the signal amplitude) as elements
of that morphology. :

Morphological Mutation Functions

L Figrure 4. a) UUIM Mutation with an index of 05. b) IUIM Mutation with an index of 0.5 and clumping

Normalization and Filtering .
The inherent instability of the wunsigned
mutation functions is an obstacle in applying them
to time domain sound samples. Typically sources
and targets have different contours and interval
magnitudes, and applying jusf the interval
magnitudes or just the contour of one to the other
offsets the absolute magnitude of the resultant,
especially for periodic signals. Since the offset is
the same for each period of the signal, the overall
offset grows by that constant amount every period.
As the input signals grow in length, the offset
grows and, if straight normalization is osed, the
desired signal component amplitudes decrease until

they are inaudible.” Typically it does not take a

very long signal (on the order of one second at a
44100 sampling rate) before the desired signal is
completely inaudible. © o B

One method of eliminating this offset is to fit
a straight line to the signal using linear regression
and subtract the line from the signal. This does not
significantly distort the desired signal and allows it
to expand when normalized. A straight line
approximation of a signal is obtained by the
ollowing equation:

Sx? - (Zx)?

o D S—
Y= Bary) - Zx* By | *
- n . ..
This method works for steady state signals, For
time varying signals, however, the offset created by
the mutation function may be positive for part of
the signal and negative for another part, 80 2
straight line subtraction is not sufficient. Higher
degree polynomials could be fit to the mutant, but
that would not be very efficient. After a closer look
at the rate {or slope) of the offset created by the
mutation functions, it was discovered o generally
be below the audio range. In effect, it is an
inaudible residue from the mutation functions
themselves. By applying a high pass filter with a
cutoff frequency just below the hearing threshold
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(about 16 Hz) all of the residue disappears and the
mutant can be fully normalized, Because the residue
is inaudible, filtering it out does not destroy the
validity of the mutation functions as Cross-

synthesis functions.
Mutant 2 E i :
Taret Unalgned
- ) g
Soures £ : c : ‘
) Mnunil -

Figure 5. Contour/UIM mutation with indexes of
1.0 ,

Frequency Domain

Work on mutations of the frequency magnitude
of sound signals is still in the preliminary stages,
with some very promising results. The basic
method for mutating two sound signals in the
frequency domain is to take a running Fouriet
analysis of both the source and the target and
perform the mutation on the magnitude window,

- First, an N-point Fast Fourier Transform (FFT) is

taken of both Source and the Target sounds, which
is obtained by:

X(k)= Yx(n)* g-J{2mkniN)
=0
where: k is angular frequency ranging from Oto2m,
N is the length-of the FFT, and x{n) is the time
domain signal.

Under the current NeXT implementation, the
length of the FFT is user selectable, and the
overlap size of the windows is one half of the FFT
length. This introduces a trade-off of high
frequency resolution and low window (to signal)
resolution for long FFTs and the reverse for short
FFTs. The size of the FFT has not been
experimented with very much at this stage. The
FFT is expressed as a sum of complex exponentials
because: .

¥ = cosw + Jsinw
and thus each frequency can be represented as
complex exponential or alternatively as a
magnitude and phase where:

Magnitude = Va2 + b

Morphological Mutation Functions

Phase = an-1( 2
a

where: a is the amplitude of the real (cosine) part
and b is the amplitude of the imaginary (sine) part.

In this first implementation of the mutation
functions, the frequency magnitude of the signals
was mutated and the phase was simply crossfaded
using the following method:

Phase = index * targetPhase + (1 - index) *

sourcePhase

At first, phase was ignored but the signals in
sequential windows did not line up properly. This
method of crossfading the phase was the simplest
way to stay within the basic constraints of the
mutation functions: when the index is zero, the
mutant should resemble the source and when the
index is one, it should resemble the target. One

“can see that this function is a simple Absolute
- Magnitude mutation. In future implementations,

mutating the phasé as well as the magnitude of the
frequencies with the same mutation function will
be investigated. Mutating the frequency data in
their complex representation will be experimented
with as well.

After the frequency data is mutated the inverse
FET is taken and each window is multiplied by a

" crossfade window and overlapped with the preceding

and following windows. In the current
implementation, before the inverse FFT is taken,
the frequency magnitude data is normalized so there
are no negative -frequencies, which could have
resulted from the mutation function. A crossfade
window provides a clean flow from one window to
the next. :

Melodic Example

The following melodic example, Figure 6, )
uses a combined mutation: Linear Contour with
stochastic clumping, followed by [ UIM (Irregular
Unsigned Interval Magnitude), again with
stochastic clumping. This example mutates the
first several measures of a fiddle tune {the source},
"The Road to Chimacum® by Patricia Spaeth -
[Williams, page 13], to an excerpt (of equal length)
from Bill Cole's transcription of John. Coltrane’s
solo from the tune "Countdown” (the target) [Cole,
page 105]. "... Chimacum" is transposed up a
major sixth so that. both of the tunes can start on
the same pitch, and only pitches are mutated (ail
the rhythms in the source and target are eighth
notes). This example shows 9 melodies, more or
less equal spaced mutations from the source (2=
0.0) to the target (£2 = 1.0), although values for £
= 2 and Q = .8 are omitted for space reasons only.
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"Road to Chimacum" -> "Countdown"
Contour/UUIM Mutation

*Road to Chimacum”

bedt

by i 2 4
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Figure 6. Melodic Example

Morphological Mutation Functions L. Polansky and M. McKinney
ICMC 240

r L0 . ot




This example was. writien algorithmically in
HMSL and saved to FINALE as a MIDIFile.

In this example, the contour and TUIM
maations are not synchronized, each one
siochastically chooses intervals to mutate from the
source towards the target for each mutated melody,
indapendently of the other mutation. In other
words, the same HMSL program run several imes,
would produce different intermediary mutations, but

- the general trajectory of mutation would be the

sagpe, eventually general ing the target (2 = L.0).
A slightly different interval function is used in this
example, useful in normalizing the mutations. All
intesval calculations are made to the first clement of
the merphologies. That is, a simple signed interval

 ig of the form §;- S;, instead Si- Si-1.

Current and Future Work

These mutations have been implemented on
two different platforms, in the computer music
language HMSL and on the NeXT computer. The
HMSL implementation allows for sophisticated
real-time melodic mutations, as well as waveform
mutation (also real-time) on the Commodore
~ Amiga and on the Macintosh-based DigiDesign
* AudioMedia or Sound Accelerator cards. The use of
HMSL allows for these mutations 1o be controlled
in a variety of interactive contexis. The mutations
have been used in several pieces by Polansky,
including Bedhaya Sadra/Bedhaya Guthrie, (19903},
and 3 Studies, for performers and live interactive
computers (1990D).
~ On the NeXT machine, McKinney has
implemented a simple, user-friendly platform for
experimentation with time and frequency domain
mutation of soundfiles. This implementation
allows the user to specify values for clumping,
index, index waveforms, types of mutation, and so
on, and has so far been the primary source for
_ beginning to understand the sonic aspects of
mutation synthesis McKinney, 1991].

Work on mutation functions and mutation
synthesis is just beginning, and many theoretical
and practical issues need addressing, including: 1)
continued expansion of these two platforms; 2)
implementation of 56000 code inside of HMSL for
a user-friendly real-time mutation synthesis
platform, to be used in performance at both the
event and timbral levels; 3) a formal and
mathematical undersrandinhlof the relationships
between mutation functions and standard synthesis
algorithms, so that, for example, resolting spectra
will be more predictable; 4) implementation of fast
algorithms for combinatorial mutations, both at the

Morphological Mutation Functions

‘waveshaping synthesis); 8) more work on the

‘more detail here.

melodic and waveform level; 5) more sophisticated
and accurate normalization and filtering techniques;
6) algorithms and methods for mutating
morphologies of unequal lengths; 7) a systematic
set of experiments L0 gain sonic understanding of
these functions, stasting with simple waveforms,
constant phases, and known indexes (as in

effects of phase differences in the time domain; 9)
experiments with different values and types of
clumping; 10) techniques for mutations of
morphologies of unequal length; 11) more
experimentation in the weighted concatenation of
different mutation functions. We have already
begun to work on most of these issues, but space
limitations prevent us from describing them in
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