

THE PYTHAGOREAN COMMA

The Pythagorean comma results from the "circle of fifths," when those intervals are tuned as the ratio $3 / 2$. Compounding $5^{\text {th }}$ s (C-G-D-A-E-B-F\#-C\#-G\#-D\#-A\#-F(E\#)-C) will never result in an in-tune octave (2/1). This is the simplest example of the "historical tuning problem." In the illustration above the difference between the compounded $3 / 25^{\text {th }} \mathrm{s}$ are solid dots, connected by arrows showing the direction of the tuning. Open circles are the corresponding equal-tempered $5^{\text {th }}$ s. Each $3 / 25^{\text {th }}$ adds 2ϕ to the difference between these intervals, culminating in the $24 \varnothing$ comma shown by the red dot when the tuning comes full circle.

