
OWT: A REAL-TIME OPTIMAL TUNING APPLICATION

Wei Pan1, Micah K. Johnson2, Larry Polansky3, Daniel Rockmore1,4 and Douglas Repetto5

1 Dartmouth College, Department of Computer Science
2 MIT, Department of Brain and Cognitive Sciences

3 Dartmouth College, Department of Music
4 Dartmouth College, Department of Mathematics

5 Columbia University, Department of Music

ABSTRACT

This paper presents the Optimal Well-tempered Tun-
ing system (OWT), a software application for computing
optimal tuning systems in real-time. The optimal tuning
systems are created from a framework, proposed by us,
that formalizes historical and cross-cultural criteria. The
parameters of the system are a fixed number of pitches, a
repeat factor, an ideal tuning set, and weights for keys and
intervals. This framework allows for an efficient least-
squares solution to a tuning problem, thus enabling real-
time control of the parameters. With this software, a user
can visualize, modify, and hear optimal tuning systems
while the music is playing.

1. INTRODUCTION

When J.S. Bach wrote the forty-eight preludes and fugues
of The Well-Tempered Clavier (1722, 1740), the tuning
of his keyboard was markedly different from the one we
are accustomed to today. Though it is commonly thought
that Bach composed the works to demonstrate the modern
12-tone equal-temperament, scholars believe Bach’s par-
ticular tuning was one of the “well-temperaments” in wide
use at the time [1].

Well-temperaments are tuning systems with a musical
richness that arises out of a complex system of acoustical
compromises. Bach thought that the concept was impor-
tant enough to publicize it in the title of his masterpiece, a
work written to demonstrate the possibility of writing and
playing in all twenty-four major and minor keys [1, p. 35].

Although the term well-temperament most often refers
to various tunings of the late Baroque, it can be argued that
any tuning system which implements a similar set of com-
promises, with the goal of achieving a versatile tuning, is
a well-temperament. This classification includes virtually
all established tuning systems throughout the world and
throughout history. Each of the many well-temperaments
in use in Bach’s time was distinct, yet all tried to satisfy
similar criteria in order to achieve a “good” tuning. These
criteria included imprecise notions such as purity of inter-
vals and number of acceptable keys [2].

In previous work, we developed a mathematical frame-
work for tuning and scale formation, thus making pre-

cise the historically subjective criteria for designing well-
temperaments. In this paper, we demonstrate our system
with a software application capable of deriving, visualiz-
ing, and performing music with optimal tuning systems in
real-time. In the rest of the paper, we review the math-
ematical details of our framework, present the software
application, and discuss its features. In addition, we have
made the software freely available so that anyone can ex-
periment with and hear optimal tuning systems [3].

2. METHODS

Tuning systems throughout history and across various cul-
tures have used a set of complex compromises to account
for some or all of the following constraints:

1. Pitch set: use of a fixed number of pitches (and con-
sequently, a fixed number of intervals)

2. Repeat factor: use of a repeat factor for scales and
for the tuning system itself (e.g., the octave)

3. Intervals: an idea of correct or ideal intervals, in
terms of frequency relationships

4. Hierarchy: a hierarchy of importance for the accu-
racy of intervals in the system

5. Key: a higher-level hierarchy of the relative impor-
tance of the specific scales or modes begun at vari-
ous pitches in the system.

Most tuning systems attempt to resolve some or all of
the five constraints listed above. Our framework provides
a way to state these constraints mathematically and de-
rive an optimal solution. In our formulation, there is a
weighting system that allows for the creation of any tun-
ing system with a fixed number of pitches, repeat factor,
and some set of ideal intervals. Not all tuning systems,
of course, consider all of these constraints in their con-
struction, nor are these constraints exhaustive. However,
these constraints constitute an economical and musically
reasonable set capable of specifying well-tempered tuning
systems.



2.1. Mathematical formulation

We formalize the five constraints described above using
the following variables:

1. a set of n pitches a1, . . ., an 6= 0

2. a repeat factor ω > an

3. a set I1, . . ., In of ideal intervals

4. a set of interval weights ι1, . . . , ιn

5. a set of key weights κ0, . . . , κn

In order to judge the overall tuning of a fixed set of
pitches, we consider the interval matrix, i.e., the (n+1)×
(n + 1) matrix of all intervals generated from the set of
pitches:

M =

 m0,0 . . . m0,n

...
. . .

...
mn,0 . . . mn,n

 , (1)

where:

mi,j =
{ aj − ai if i ≤ j ,
ω + aj − ai if i > j ,

(2)

with a0 = 0. The diagonals of the interval matrix M hold
all instances of a particular interval generated by the set of
pitches. The corresponding ideal interval matrix is:

L =


I0 I1 . . . In−1 In
In I0 . . . In−2 In−1

...
...

. . .
...

...
I2 I3 . . . I0 I1
I1 I2 . . . In I0

 , (3)

with I0 = 0. We define an error function E to measure
the sum of squared errors between the ideal intervals and
the intervals generated by the set of pitches:

E(a1, . . . , an) =
∑

(M − L)2, (4)

where the exponentiation and summation are both applied
element-wise to the matrix. Without any preference given
to keys or intervals (i.e., without any weights), the opti-
mal solution to Equation (4) is always equal-temperament.
Intuitively, this solution makes sense: if all weights are
equal (to one), then equal-temperament is the best tuning
system. To specify preferences for certain keys and inter-
vals, we introduce matrices of key and interval weights:

I =


ι0 ι1 . . . ιn−1 ιn
ιn ι0 . . . ιn−2 ιn−1

...
...

. . .
...

...
ι2 ι3 . . . ι0 ι1
ι1 ι2 . . . ιn ι0

 , (5)

K =


κ0 κ0 . . . κ0 κ0

κ1 κ1 . . . κ1 κ1

κ2 κ2 . . . κ2 κ2

...
...

. . .
...

...
κn κn . . . κn κn

 . (6)

Let the weight matrix W = I ? K, where the ? opera-
tor denotes a Hadamard, or element-wise product. The
weighted version of the error function is then:

Ê(a1, . . . , an) =
∑

W ? (M − L)2. (7)

For each set of constraints specified in the matrices
W and L, there is a unique solution that minimizes the
weighted error function Ê. This solution is computed us-
ing least-squares. The result is a set of pitches a1 to an,
called the optimal tuning system. While the optimal tun-
ing is unique to a given set of constraints, the converse is
not true: there is not necessarily a unique set of constraints
that will generate a given tuning. In other words, multiple
sets of constraints can generate the same tuning, within a
specified tolerance.

3. SOFTWARE

3.1. Introduction

MIDI tuning applications, such as Scala and the Java Just
Intonation Calculator [4, 5], have existed for a long time.
However, we feel that our optimal tuning framework is
both a powerful and general tool for analyzing and creat-
ing tuning systems. Therefore, we developed a GUI-based
software application based on the mathematical formula-
tions in Section 2. We believe that this software will be
beneficial to musical communities for several reasons: it
will enable scholars to study and analyze different tunings
in a mathematical manner; it will allow tuning-system de-
signers to both hear and see their tuning systems; and it
will allow performers to modify tuning systems in real-
time by adjusting the constraints.

We call our application OWT (Optimal Well-tempered
Tuning system). 1 It is a MIDI player with real-time op-
timal tuning adjustment that provides a graphical user in-
terface for users to change constraint sets. From the con-
straints, it calculates optimal tuning results, displays them
graphically and plays MIDI files with arbitrary tunings in
real time.

This software uses JAVA technologies, and takes either
the low end software synthesizer that ships with the JAVA
runtime library or any other high end external MIDI syn-
thesizer as a tone generator. Such an architecture allows
us to distribute OWT for different platforms with ease [6].

3.2. Tuning window

The tuning window of OWT, which appears first when
launching the application, is illustrated in Fig. 1. It is
separated into different blocks and multiple tasks can be
accomplished through this window:

1. Entering Tuning Constraints: The ideal intervals,
interval weights and key weights are adjustable in
box (a); the pitch set and the repeat factor can also
be modified in box (c).

1 The software is under active development and the latest version and
manual can be downloaded from [3].



Figure 1. The tuning window allows control of (a) tuning
constraints, (b) tuning parameters, and (c) preset tunings.

Figure 2. The tuning result window. The key of F in the
W3 tuning is displayed as an optimized result.

2. Loading Preset Tunings: OWT has many built-
in tuning presets for users to use directly, which
can be loaded inside the upper right box (b). They
range from the famous Werckmeister III (W3) to the
optimal well-tempered tunings OWT1 and OWT2,
mentioned in Section 4 of this paper. All presets are
presented in the form of a set of constraints.

3. Saving and Loading Constraints: OWT allows
tuning constraints to be saved to a file on your hard
drive. This file can be loaded at a later date to con-
tinue working on a tuning system.

4. Displaying an Optimal Tuning: The tuning result
window shown in Fig. 2 can be opened by click-
ing the “Show Optimized Result” button. The ideal
intervals and the actual optimized intervals for a
certain key are compared in two colored columns
with the value of each interval illustrated through
the height of each rectangle. Squared error mea-
sures are also available.

3.3. Playing window

A MIDI sequencer is embedded in OWT, which can be
accessed through the playing window in Fig. 3. The MIDI
sequencer is compatible with all formats of .MID files,
and its ability to play in arbitrary tunings is constructed
on the standard MIDI pitch bending mechanism [11].

The upper block (a) in Fig. 3 is a standard MIDI player
interface, where users can open, play, or stop a MIDI file.

Figure 3. The playing window lets the user (a) load and
play MIDI files and (b) change the tuning in real-time.

Eb Bb F C G D A E B F# C# G#

2

4

6

8

10

12

14

16

Major triad

T
em

pe
rin

g 
of

 M
aj

or
 tr

ia
d

 

 

W3
Y2
OWT1
OWT2

Figure 4. The tempering of the major triad for four tuning
systems, two historical, Werckmeister III (W3) and Young
II (Y2), and two novel, OWT1 and OWT2. All four tuning
systems achieve the minimum mean-tempering of 10.43¢,
but distribute the error differently amongst the keys.

The lower block (b) is for tuning selections, which allows
users to switch between preset tunings.

One unique feature of OWT is that it allows for changes
to the constraints, and therefore changes to the tuning sys-
tem, in real-time. In the OWT interface, a user can switch
to the tuning window while a MIDI file is being played
simultaneously in the play window. It is very exciting
to switch between W3, 12-tone equal temperament, or to
any of your own tunings while Bach’s The Well-Tempered
Clavier is being played.

3.4. Other Features

OWT also supports non-regular tunings: by adjusting the
repeat factor and number of pitches, users are able to gen-
erate brand new scales with fewer than 12 notes in an oc-
tave. Users can compose MIDI files for their unique scales
by following the OWT manual.



4. EXAMPLES

To explore the possibilities resulting from our framework,
we created two new well-temperaments. As a way of
comparing tuning systems, Rasch, Chalmers, and others
have proposed several simple measurements [7, 8]. We
will use the measurement proposed by Rasch in his dis-
cussion on Werckmeister’s tuning systems. This measure-
ment considers the mean-tempering of “all consonant in-
tervals, which is equal to the mean tempering of all triads,
or of all keys [7].” A simple way to compute the mean-
tempering of a tuning system is to measure the absolute
difference between the intervals of the major triad in each
key to the ideal intervals 3/2, 5/4 and 6/5. Rasch’s mea-
sure is thus an error function between a tuning system and
a given set of ideal intervals. This error function provides
us with a meaningful way to measure the results of some
simple experiments in generating new well-tempered tun-
ing systems.

The historical tuning system Werckmeister III (W3)
is exemplary in its mean-tempering of 10.43¢, which is
the same as twelve-tone equal-temperament, and can be
shown to be an absolute minima. Another historical well-
temperament known as Young II (Y2), sometimes consid-
ered to be an improvement on W3 [9, 10], also achieves
this minimality.

Using our framework, we generated two new optimal
tuning systems with the same minimal mean-tempering
of 10.43¢. In Fig. 4, we show the tempering of the ma-
jor triad in all twelve keys for the two historical tunings
mentioned above (W3 and Y2) as well as our new opti-
mal tuning systems (OWT1 and OWT2). These new tun-
ing systems are maximally in tune by the mean-tempering
measure. They also have a great deal in common, theoret-
ically and musically, with historical well-temperaments,
yet their musical implications and structure differ in im-
portant ways from their historical models. For example,
an important characteristic of Y2 is its four adjacent keys
with a major-triad tempering of 6.5¢. Our optimal tuning
system OWT1 also has four keys with a similar major-
triad tempering, but these keys occur in two pairs sepa-
rated by a tritone. The tuning system W3 has one key (F)
with a very small major-triad tempering of 2.6¢. The op-
timal tuning system OWT2 has two keys (G and D) that
achieve the same minimum. These are just two examples
of the many possible tuning systems that can be generated
with our software.

5. CONCLUSION

We have presented a software application for exploring
optimal tuning systems. This application allows scholars
to hear and see their tuning systems as well as compare
them with historical systems such as Werckmeister III and
Young II. It also allows performers to adjust tuning sys-
tems while the MIDI file is being played, thus enabling
real-time control of tuning.

But what does this application mean with respect to the

great tuning traditions of the world? Tuners like Werck-
meister and Young labored hard and long to create their
complex, beautiful scales, yet similar if not identical re-
sults may be generated quickly and simply, according to
specific sets of initial conditions. Rather than trivialize
the work of these master tuners, this application sheds
new light on their accomplishments: both Werckmeister
and Young, using the tools of their time, were able to bal-
ance complex sets of compromises to achieve the mini-
mal mean-tempering. This application simply builds from
their work using modern techniques.

While this application models some constraints for tun-
ing systems, it does not model all criteria that have influ-
enced tuning systems throughout history. There are cer-
tainly other cultural, aesthetic, historical and intangible
factors that have affected the development of tuning sys-
tems in ways that mathematics cannot model. But given
the range of scales that can be generated, including many
historical well-temperaments, this work suggests that the
mathematics of scale tuning is a little less mysterious than
had previously been thought.

6. REFERENCES

[1] Ledbetter, D. Bach’s Well-Tempered Clavier:
The 48 Preludes and Fugues. Yale University
Press, New Haven, 2002.

[2] Barbour, J.M. Tuning and Temperament: A
Historical Survey. Dover Publications, Mine-
ola, NY, 2004.

[3] Polansky, L, et. al. Optimal Well-
Temperament Supplementary Materials.
http://eamusic.dartmouth.edu/

˜larry/owt/, May 23, 2008.

[4] Coul, M. Scala Version 2.2. http://
www.xs4all.nl/˜huygensf/scala/,
Netherland, 2006.

[5] Java Just Intonation Calculator. http://
jjicalc.sourceforge.net, May 23,
2008.

[6] Sun Microsystems. Java Technology. http:
//java.sun.com, May 23, 2008.

[7] Werckmeister, A. Musicalische Temperatur.
Ed. R. Rasch. Utrecht, Diapason Press, 1983.

[8] Chalmers, J. “Some New Linear Tempera-
ments”, Xenharmonikon 2, 1974.

[9] Jorgensen, O. Tuning. Michigan State Univer-
sity Press, East Lansing, 1991.

[10] Donahue, T. A Guide To Musical Tempera-
ment. Scarecrow Press, Lanham, MD, 2005.

[11] MIDI Manufacturers Assoc. General MIDI 2
Specification, Version 1.1, 2003.


