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N THIS PAPER WE PROPOSE  a mathematical framework for the opti-
mization of tuning systems. We begin with an informal definition of 

“tuning system.” We then propose five general  constraints  that  seem 
common to their evolution. The central idea of this paper is the quan-
tification of those constraints in terms of a set of numerical parameters. 
Given  a  choice  of  parameter  values  we  use  appropriate  optimization 
methods  to  produce  an  optimal  tuning  for  a  specific  set  of  values. 
Finally, we consider some historical and Javanese tunings from this per-
spective, and use the framework to generate a few examples of novel 
tuning systems.

I
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TUNING SYSTEMS

A tuning system is a set of intonations for intervals or pitch classes. A 
tuning system might be used by a musical culture, group of musicians, 
or even a single composer. Such a system may also serve as an abstrac-
tion, or model, for the derivation of any number of related systems and 
sub-systems.

Smaller,  functional  subsets  of  pitches,  such  as  scales,  are  extracted 
from  a  larger  tuning  system for  specific  musical  purposes.  Examples 
include the formation of major and minor (and other) scales from 12-
tone  equal  temperament  (12-ET),  or  the  various  Javanese  pathet 
(manyura,  nem,  sanga,  etc.)  which  are  subsets  of  slendro and  pelog 
tuning (Perlman, 40–43).

Tuning systems are neither static nor rigid.  Although most musical 
cultures need some agreed-upon standard for musicians to tune their 
instruments and sing to, tuning systems evolve and fluctuate over time 
and in space (i.e.,  historically and geographically) and vary stylistically 
within musical  practice.  Most musical cultures have some standard or 
canonical tuning, articulated in either oral or in written traditions. Such 
a system may often be canonized in a specific instrument, like the piano, 
or the gendér in Central Javanese music which may hold the tuning for 
an entire gamelan.

We  are  interested  here  in  a  formal  framework  for  tuning  systems 
themselves, not the intricate (but no less important) musical variations 
and manifestations of such a system. Musicians deviate freely and artis-
tically from standardized tunings in fluid, complex ways. For example, 
the  many  musical  genres  that  share  the  nomenclature  and  intervallic 
template of 12-ET (like jazz and blues) are intonationally diverse. But 
the  complexities  and  nuances  of  intonational  usage  associated  with 
established tuning systems are beyond the scope of this paper.

Culturally-  and  historically-specific  constraints  may  influence  the 
formation of tuning systems. A new system that resembles a pre-existing 
one is often desirable, as in Central Javanese gamelan tunings which ref-
erence well-known gamelans.1 A tuning system might adapt over time in 
the performance of an evolving body of music. This latter consideration 
is an important factor in the historical evolution of tunings in European 
music over the past millennium, including just intonations (JIs), mean-
tones,  well-temperaments  (WTs),  equal  temperaments  (ETs),  and 
twentieth-century experimental tuning systems.

From a formal,  abstract  perspective  tuning  systems  can be seen as 
specific  attempts  to  solve  certain  problems,  and  understood  as  the 
resolution of a particular set of intonational constraints. The genesis of 
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these problems—whether they emanate from issues of culture, economy, 
convenience, aesthetics, or some complex combination of all of these—is 
another issue. Our focus is on a relatively small set of important factors 
common to the creation of tuning systems, whose natural quantitative 
formulation enables the use of optimization techniques for analysis. We 
believe  this  approach  has  important  implications  towards  a  deeper 
understanding of tuning and even musical style.

FIVE CONSTRAINTS

Tuning systems through history and across cultures are the result of a 
set  of  complex  compromises  aimed  at  simultaneously  incorporating 
some or all of the following structural constraints:

1. Pitch set:  use of  a fixed number of pitches (and consequently, a 
fixed number of intervals);

2. Repeat factor: use of a modulus, or repeat factor2 for scales, and for 
the tuning system itself (e.g., an octave);

3. Intervals:  an idea or set  of  ideas of  correct  or “ideal” intervals, 
defined in terms of frequency relationships;

4. Hierarchy:  a ranking of importance for the accuracy of  intervals 
with respect to the ideal intervals;

5. Key: a hierarchy of importance of specific scales begun at various 
pitches in the system.

Most  tuning systems attempt to resolve  some or all  of  the five con-
straints  listed  above.  The  “best”  fit  may  also reflect  and incorporate 
other theoretical, cultural, historical, and even aesthetic factors. How-
ever,  these  five  fundamental  structural  constraints,  which  appear  to 
operate at a different, less culturally specific level, can be stated formally 
and mathematically. In this formulation, there is an associated weighting 
system that allows the generation of any tuning system with a fixed num-
ber  of  pitches,  repeat-factor,  and some set  of  ideal  intervals.  Not  all 
tuning systems, of course, consider all of these constraints in their con-
struction.  Neither  are  they  exhaustive.3 However,  these  constraints 
constitute an economical and musically reasonable set capable of provid-
ing an interesting analysis of any tuning system.
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COMMENTS ON THE FIVE CONSTRAINTS

Some concept of a  number of pitches seems to be nearly universal, pri-
marily, perhaps, for practical reasons.4 In actual performance practice the 
situation is usually more complex. Style-specific ideas of “between-ness” 
and intonational variation are sometimes well-articulated in theory and 
pedagogy, yet it is difficult to completely account for intra- and inter-
cultural variation. For that reason, most theoretical tuning literature has 
focused on canonical tuning systems. We adopt a similar approach here, 
assuming a fixed number of “discrete” (Burns and Ward, 243) pitches 
for a tuning system.

While  musics  vary  widely  in  the  numbers  of  basic  and/or  named 
pitches  in  use,  having  a  fixed number  of  pitches  offers  practical  and 
cognitive  advantages.  The  most  obvious  benefit  is  economical,  as  it 
affects  the  construction  of  instruments.  There  are  pedagogical  and 
musical advantages to a finite, even moderately sized set of pitches from 
which  to  learn  to  compose,  improvise,  sing,  and  perform  common 
repertoires (Dowling and Harwood, 92; Burns and Ward, 244). Some 
authors (e.g., Lerdahl) have proposed cognitive explanations for certain 
numbers of pitches in a system. Whatever the specific optimal numbers 
may  be,  cultures  seem  to  eventually  agree  on  a  specific  number  of 
pitches for a tuning system.5

Repetition of  an interval  set  at  some fixed interval,  or  modulus,  is 
common, if not universal, and is related to having a fixed set of pitches. 
Both music theory and cognition often distinguish between pitch height 
and  pitch chroma (Shepard 1964; 1982), the latter usually referring to 
pitches  whose  frequencies  are  related  as  powers  of  two,  or  octaves. 
Although the modulus interval is usually the octave (or something close 
to it), this is not always the case, as in the well-known Pierce-Boehlen 
scale (Matthews and Pierce; see also, Moreno), or the stretched octaves 
of  Central  Javanese  tuning  (Surjodiningrat  et  al.;  Sethares;  Polansky 
1984). The universality of the octave is not generally disputed, but the 
extent to which its prevalence is best accounted for by hard-wired or 
learned  cognitive  mechanisms  is  uncertain  (e.g.,  Burns  and  Ward,
262–264, and for a discussion of octave equivalence in other primates, 
see Hauser and McDermott). Regardless, most tuning systems seem to 
repeat, or “cycle,” (Dowling and Harwood, 19) at some fixed interval. 
This  interval,  in  practice,  can  be  somewhat  flexible,  incorporating 
spectral considerations (such as the stretched octaves of piano tuning), 
musical factors, or some combination of the two. Given the utility of a 
fixed  set  of  pitches,  a  reasonably  constant  repeat-factor  is  a  likely 
corollary.6 In our  framework we do not  assume a specific  interval  of 
repetition—only that the system repeats at a constant interval.7
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Tuning systems that place a greater importance on some intervals than 
others are called hierarchical  (Krumhansl  1990; in particular, Chapter 
10). The mathematical simplicity of an interval is often correlated with 
its  importance  (such  as  a  “pure”  fifth,  octave,  or  third).  There  are 
cognitive (Trehub) and acoustical arguments for the importance of these 
intervals—they are easily heard, measured, and produced, and are likely 
candidates  to  function as generators  for  larger  sets  of  intervals.  As  a 
consequence,  the  mistuning of  such “important”  intervals  may be of 
greater  concern.  Even  in  12-ET,  this  hierarchy  exists:  the  octave  is 
exactly 2/1, the fifth is extremely close to 3/2 (2 cents difference), and 
the third much further from 5/4 (14 cents difference).

Subsets of  tuning systems (scales, modes,  pathet, or  rags,  etc.) may 
similarly  demonstrate  such  a  hierarchy.  Many,  if  not  most,  bluegrass 
songs, for example, seem to be in open keys on the guitar, mandolin, 
and fiddle (G, D, A, E), and it is common for bluegrass guitarists to 
tune to an “open G chord,” privileging its tuning slightly over 12-ET. 
In other words, it is more important that the key of G be “in tune” than 
the key of C#. Historically, European art music has implemented these 
kinds of relationships in mean-tone tunings and well-temperaments. Key 
hierarchies also occur in the pathet (roughly: scales) of Central Javanese 
gamelan  music.  The  tuning  system  called  slendro has  three  pathet 
(manyura,  nem,  sanga),  which  have  complex  usage  relationships 
implying  intonational  constraints  for  particular  melodic  patterns  and 
intervals (Perlman, 44–45; Sumarsam, 142–143).

It  is  important  to state  a priori that  the mathematical  formulation 
outlined here does not assume that tuning systems are based on small, 
rational intervals. Indeed, many tuning systems (such as slendro and 12-
ET) deviate significantly from those kinds of intervals. Nor do we mean 
to engage longstanding discussions of  “categorical perception” (Burns 
and  Ward,  250–254;  Patel,  24–26;  Sethares,  50)  or  “consonance” 
(Tenney 1988).  The purpose of this framework is to consider tuning 
systems through the analysis of stylistically non-specific variables such as 
number  of  pitches,  repeat  factor,  ideal  intervals,  interval  and  key 
weights.

HISTORICAL EXAMPLE: WELL-TEMPERAMENT

Examination of a few well-known constructs from historical European 
tuning theory can illustrate some of the motivations for the mathemati-
cal  framework  described  below.  Several  concepts  central  to  our 
framework are introduced here: the interval matrix, ideal intervals, the 
associated error matrix, and the error function.
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Table 1 shows a common Just Diatonic scale (begun arbitrarily on 
“C”).

By definition, JIs are “in tune” in one key (possibly a few others) but 
problematic  in  others.  Certain  intervals  that  represent  differences 
between a fixed number of  scale  degrees  will  differ  from some  ideal  
interval which appears elsewhere in the scale. In the Just Diatonic scale 
in Table 1, the most important such interval (aside from the 2/1 octave) 
is  often  considered  to  be  the  3/2  perfect  fifth.  The  musical  fifth 
between the second and sixth degrees of the scale above (40/27, the 
well known “wolf-fifth”) differs from that between the first and fifth or 
the third and seventh scale degrees.8 Central to this phenomenon is that 
intervals in this scale are built on more than one prime: in this case, the 
primes 2, 3 and 5. A tuning system such as JI can’t have pure intervals 
involving different primes and still be in tune with itself. The wolf-fifth 
is  only  one  example,  if  perhaps  the  most  famous.9 An even  simpler 
version  of  this  phenomenon  occurs  in  the  well-known  Pythagorean 
comma,10 which involves only the primes 2 and 3.

This fundamental problem, which can be called the collision of primes, 
has no simple resolution, and has motivated the development of many 
tuning systems. It is also, in part, a consequence of the constraints of a 
repeating tuning with a fixed number of  notes.  WTs, and ultimately, 
equal-temperaments (ETs), approximate ideal intervals in more complex 
ways,  moving  towards  the  equality  of  derived  scales  beginning  on 
different notes.

We  might  refer  to  this  as  the  historical  tuning  problem,11 a 
musical/mathematical  ramification  of  the  insolvability  of  the 
Diophantine  equation  pn =  qm for  distinct  primes  p  and q  (and
n, m > 0).12 The problem for music theory is quite general, and might 
more appropriately be referred to not by its species name (“wolf”), but 
by its family name: the “canidae interval,” more generally describing any 

1/1 9/8 5/4 4/3 3/2 5/3 15/8 2/1 (ratios)

C D E F G A B C (note names)

0 204 386 498 702 884 1088 1200 (cents)

TABLE 1: JUST DIATONIC SCALE. CENTS VALUES ARE FOR INTERVALS

IN RELATION TO 1/1 (“C”).
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interval  that  is  the  result  of  a  collision  of  primes  and  therefore 
necessitates  some sort  of  compromise in the tuning system itself.13,14 

But this “collision” will occur in any system with irregular intervals—not 
just rational intervals. Thus, any system (except for ET) that has some 
set  of  ideal  intervals,  fixed set  of  pitches,  and repeat  factor  needs  to 
develop systematic compromises in order to resolve this problem.

The interval matrix is a useful way to encode a tuning system. The i,j  
(row, column) entry in this matrix is the interval between notes i and j. 
Table 2 shows the half-matrix15 of the JI diatonic scale16 clearly showing 
the wolf fifth at entry (D, A) or (2, 6):

TABLE 2: INTERVAL HALF-MATRIX OF JUST DIATONIC SCALE. INTERVALS ARE IN 

RATIOS WITHIN ONE OCTAVE. FIFTHS ARE IN BOLD. THE WOLF (40/27) IS THE 

ONLY NON-IDEAL PERFECT FIFTH. NOTE THAT ALL MAJOR THIRDS (C–E, F–A, G–B) 
ARE IDEAL INTERVALS OF 5/4

An ideal tuning would be one in which the i,j entry only depends on 
|i-j|—each  entry  is  equal  to  an  ideal  interval.  In  the  ideal  interval  
matrix, values on the diagonals are constant and equal to the ideal ratio. 
The ideal interval matrix is equivalent to the interval matrix only in ET. 
Any  unequal  interval  propagates  itself  through  the  matrix,  causing 
irregularity.

The entries of the error matrix of a tuning system are the differences 
between the entries of the interval matrix and the respective entries in 
the  ideal interval matrix. Tables 3 and 4 show respectively the interval 
matrix and a subset of the error matrix for one of the most studied WTs 
in history:  the  so-called “Werckmeister  III” (W3) tuning,  devised by 
Andreas  Werckmeister,  an  influential  Seventeenth-Century  music 
theorist and keyboard tuner.17
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C C# D Eb E F F# G G# A Bb B C

C 90 192 294 390 498 588 696 792 888 996 1092 1200

C# 102 204 300 408 498 606 702 798 906 1002 1110

D 102 198 306 396 504 600 696 804 900 1008

Eb 96 204 294 402 498 594 702 798 906

E 108 198 306 402 498 606 702 810

F 90 198 294 390 498 594 702

F# 108 204 300 408 504 612

G 96 192 300 396 504

G# 96 204 300 408

A 108 204 312

Bb 96 204

B 108

TABLE 3: W3 HALF-MATRIX. EACH DIAGONAL IS A SPECIFIC INTERVAL WITH 

VALUES GIVEN IN CENTS. “KEYS” CORRESPOND TO ROWS. ALL KEYS IN W3 ARE 

CONSIDERED REASONABLY GOOD.

A comparison of these half-matrices shows that in a WT system like W3 
the degree of error varies considerably over intervals and keys (shown 
here as diagonals and rows). Table 5 focuses on the error distribution of 
a few of the intervals. Smaller errors in W3 tend to be found in central 
keys (beginning on the first, fifth, and seventh degrees) and in impor-
tant intervals like the major third and perfect fifth.

All WTs (and W3 in particular) illustrate the technique we describe 
below.  They  are  also  an excellent,  clearly  articulated  set  of  examples 
representing the idea that tuning systems seem to evolve as attempts to 
reconcile  ideas  of  key,  ideal  interval,  a  fixed number  of  pitches,  and 
something  like  the  octave,  into  an  optimal tuning  system.  Well-
documented by the Eighteenth-Century theorists who developed them, 
WTs have been discussed and analyzed a great deal ever since (Barbour, 
Donahue, Jorgensen, Lindley).
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TABLE 4: W3 ERROR HALF-MATRIX. THREE (DIAGONAL) INTERVALS (MAJOR 

THIRD, PERFECT FOURTH, PERFECT FIFTH) ARE SHOWN FOR THE HALF-MATRIX. 
ERRORS ARE COMPUTED RELATIVE TO IDEAL INTERVALS OF 386, 498, AND 702 

CENTS FOR THE THREE INTERVALS.18

Key C C# D Eb E F F# G G# A Bb B

M3 4 22 10 16 16 4 22 10 22 16 10 16

P4 0 0 6 0 0 0 6 6 0 6 0 0

P5 6 0 6 0 0 0 0 6 0 0 0 6
Error (cents) 10 22 22 16 16 4 28 22 22 22 10 22

TABLE 5: KEYS IN W3. USING THE CENTS VALUES IN FIGURE 4 FOR THE MAJOR 

THIRD, PERFECT FOURTH, PERFECT FIFTH, THE ERROR DISTRIBUTION FOR W3 
(IN CENTS, FROM ONE SPECIFIC SET OF INTERVALS) CAN BE SEEN, SHOWING AN 

ALMOST SYMMETRICAL INCREASE (VIA THE CIRCLE OF FIFTHS) AROUND THE 

“CENTRAL” OR “BEST” KEY OF F.

MATHEMATICAL FORMULATION

A rigorous notion of an  optimal tuning system may be formulated by 
providing a formal, mathematical framework for some seemingly univer-
sal and important aspects of tuning. We begin by formalizing the five 
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constraints on tuning systems described above. Next, we use this lan-
guage  to  define  a  general  notion  of  the  interval  matrix and  the 
associated  error matrix as well as an  error function that uses the error 
matrix as input. We then minimize this error function using least squares 
to find the optimal tuning.

The five tuning system constraints are formalized as follows:

1. Pitch set: let a1, … , an be a set of n pitches, none equal to 0.

2. Repeat factor: let ω > an be the repeat factor of the tuning system.

3. Intervals: let I1, … , In represent the ideal intervals.

4. Hierarchy: let  i1, … ,  in be  interval weights used to represent the 
desired accuracy of the n intervals in the tuning system.

5. Key: let k0, … , kn be key weights used to represent the fixed pitches 
in the tuning system from which intervals are measured.

Using  this  notation,  the  interval  matrix  M for  a  set  of  n pitches,
a1, … , an, is written as

The matrix  M has  n+1 rows and  n+1 columns with zeros along the 
diagonal. The entry in row i and column j is aj – ai if i ≤ j, or ω + aj – ai 

if i > j. The matrix M specifies all possible intervals of the tuning system. 
All instances of a particular interval are found on the diagonals of the 
matrix. 

The ideal  interval  matrix  L represents  the desired interval  for  each 
entry in the matrix M:
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Note that  L is circulant (i.e., is generated by rotating each row to the 
right relative to the previous row).

The error matrix is the difference between the interval matrix M and 
the ideal interval matrix L. The total error of a tuning system is defined 
as  a  function  of  the  error  matrix.  Natural  choices  for  this  function 
include the sum of the absolute values of the entries, known as the  L1 

error, or the square root of the sum of the squares of the entries, known 
as the L2 error.19 We use the L2 error, which at least mathematically, is a 
natural  choice,  giving  the  Euclidean  distance  between  the  ideal  and 
interval  matrices.  It  also  has  the  advantage  of  producing  a  simple 
solution to the optimization problem (the so-called “method of  least 
squares”) that is achieved via differentiation. However, we can, and do, 
also investigate the use of  other functions  for which solutions can be 
found via a genetic-algorithm approach that we have developed.20

In  the  absence  of  any  key  or  interval  hierarchy  (i.e.,  the  interval 
weights and key weights are all equal) the L2 error function is:

where the vector   contains the  n pitches,  a1 to  an, and the subscripts
(i, j) denotes the element of the associated matrix at row i and column j. 
In Appendix A, we prove that ET is always the optimal solution for this 
case, independent of the ideal intervals specified in the matrix  L. This 
result is in accord with the historical evolution of tuning systems: if no 
key or interval is preferred over any other key or interval, ET is the best 
solution, since by definition it has no intonational differences between 
keys. If, however, as in WTs, some keys or intervals are more important 
than others, then ET may not be the best solution in the least-squares 
sense.

To formalize the notion of the relative importance of intervals  and 
keys, we use interval and key weights. These weights can be applied to 
the error function through a weight matrix W:

W = I ∗ K

where the ∗ operator denotes an element-wise product (i.e. Wi,j = Ii,jKi,j) 
and the interval-weight matrix I and key-weight matrix K are defined as
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   and 

The weighted version of the error function is therefore

or

For each set of constraints specified in the matrices W and L, there is a 
unique  solution  that  minimizes  the  weighted  error  function  (see 
Appendix A).21 This solution is called the optimal tuning system, and it 
is a set of pitches  a1, … ,  an. While the optimal tuning is unique to a 
given set of constraints, the converse is not true: there is not necessarily 
a unique set of constraints that will generate a given tuning. In other 
words, multiple sets of constraints can generate the same tuning, within 
a specified tolerance.22

For  example,  Table  6 shows  the  interval  and  key weights  used to 
approximate W3 to within an average error of 0.5 cents by using one 
(Pythagorean) interval (3/2) to generate a set of ideal intervals.23

Though many sets of constraints can generate W3, these  particular 
constraints  illustrate an interesting alternative view of the tuning: W3 
can be generated by specifying good perfect fifths in the  outer keys.24 

This is  surprising in light  of  common formulations  of  WTs in which 
“inner”  keys  are  considered  to  be  central  to  their  design.  In  other 
words, the idea of tuning to central keys may be historically true but not 
mathematically necessary.25
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TABLE 6: A GOOD APPROXIMATION OF W3. KEY AND INTERVAL WEIGHTS DERIVED 

FROM THE INTERVAL 3/2 GENERATE AN APPROXIMATION OF

W3 WITH AN AVERAGE ERROR OF 0.5 CENTS.

Using this framework, we can, with a high degree of accuracy, design 
and produce tuning systems incorporating historical and cross-cultural 
criteria. With some high degree of accuracy, we can approximate criteria 
for  the  development  of  historical  tuning  systems.  Similarly,  by 
heuristically replicating a tuning system, we can infer something about 
the criteria important to its design, such as the key and interval weights 
that would produce it from a given set of ideal intervals (or vice versa). 
This approach can be taken a step further, and used to invent entirely 
new systems based on arbitrary criteria.

This  framework  specifies  tuning  systems  parameterically,  using  a 
formal  description  of  higher  level  “features”  (five  constraints)  rather 
than “note-by-note” intervals. A given set of features uniquely describes 
one tuning system. This can be an interesting and powerful approach to 
the study of scales, tuning systems, and tuning in general, as well as a 
creative tool for new compositional ideas.

EXAMPLES: OPTIMAL WELL TEMPERAMENTS

A convenient point of comparison for our model is W3, since it is an 
historical version of the method proposed here. “. . . [W3] was the first 
unequal temperament to allow satisfactory performance of all  possible 
tonalities”  (Ledbetter,  38).  Using  the  information  contained  in  the 
interval and error matrix, we can rigorously analyze and expand upon 
statements such as the above description of W3, as well as other tunings. 
In some sense,  all  tuning systems other  than ETs are well-tempered: 
they must attempt to resolve some or all of these constraints.  From this 
perspective, our framework might be alternatively described as a way of 
creating optimal well-temperaments (OWTs).
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EXAMPLE 1: OWT1 AND OWT2 AND MINIMAL MEAN-TEMPERING

As a way of exploring the possibilities of our framework to formally 
generalize historical criteria for tuning systems, we created several new 
WTs.  Rasch,  Chalmers  (1974),  and  others  have  proposed  simple, 
reasonable  measurements  of  tuning  systems.26 Rasch,  in  his 
consideration of Werckmeister’s tunings, measures the  mean-tempering 
of “all consonant intervals, which is equal to the mean tempering of all 
triads, or of all keys” (Rasch, 38–46). This is the mean difference of the 
three  intervals  in  the  major  chord  tuned  as  1/1,  5/4,  3/2  (ideal 
intervals) and the actual intervals in the tuning over twelve keys. Rasch’s 
measure is thus an error function for a tuning system given a set of ideal 
intervals,  distinct  from,  but  related  to  the  one  used  in  this  paper.27 

Rasch uses this function to measure the degree to which Werckmeister’s 
tuning systems are “in tune,” evaluating the temperament in terms of its 
pure major thirds and perfect fifths (and consequently, major triads). In 
addition, Rasch’s measure provides us with a meaningful,  comparitive 
way to measure the results of experiments in generating new WTs.

W3 is exemplary in its mean-tempering of 10.43 cents, which is the 
same as 12-ET (and can be shown to be an absolute minimum28). An 
historical WT often known as Young 2 (sometimes considered to be an 
improvement  on  W3  (Jorgensen;  Donahue)),  also  achieves  this 
minimality.

Using our framework,  we generated two new optimal tunings with 
the same minimal mean-tempering as W3, Young 2, and 12-ET. Using 
reasonable sets of ideal intervals, we found sets of weights29 for two new 
optimal tunings (OWT1, OWT2), each of which is maximally in tune by 
a specific measure: mean-tempering of triads. OWT1 and OWT2 have a 
great  deal  in  common  (ideal  intervals,  key  and  interval  weights), 
theoretically and musically, with historical WTs. However, their musical 
implications and structure differ in important ways from their historical 
models.  Table  7 shows  all  four  tunings  (W3,  Young 2,  OWT1, and 
OWT2).

The  tempering  of  major  triads  in  W3,  Young  2,  and  the  two 
generated  tunings  OWT1  and  OWT2,  is  shown  in  Figure  1.  The 
tunings  can be viewed as  four  different  distributions  of  the  minimal 
error,  each  with  different  characteristics.  Both  W3 and  OWT2 have 
certain triads  that  are more in tune than any in Young 2 or OWT1. 
OWT2 contains two adjacent triads with equal minima, while W3 has 
only one minimal triad. This means that where W3 has one best key, 
OWT2 has two. OWT1 has two non-contiguous minima areas. For both 
OWT1 and OWT2 having several minima means that some other triads 
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will  be less in tune.  This is historically unusual, and might suggest a 
more chromatic musical style. Young 2 never achieves the triadic minima 
of W3 or OWT2, but has a wide adjacent region of relatively in-tune 
triads. It is important to reiterate that OWT1, OWT2, W3, and Young 2 
all have the same minimum total mean-tempering error.

TABLE 7: FOUR DIFFERENT MINIMALLY-TEMPERED WTS (TWO HISTORIC, TWO 

SYNTHETIC). YOUNG 2 AND W3 ARE IMPORTANT HISTORICAL TUNINGS;
OWT1 AND OWT2 ARE GENERATED BY OUR FRAMEWORK, AND LIKE W3

AND YOUNG 2, ARE “MINIMALLY MEAN-TEMPERED” BY RASCH’S MEASURE.

FIGURE 1: TEMPERING OF TRIADS IN FOUR MINIMALLY-TEMPERED WTs. EACH OF 

THE FOUR “MINIMALLY TEMPERED” WTS (TWO HISTORIC, TWO SYNTHETIC) HAS 

A DIFFERENT STRUCTURE OF THE KEY-ERROR DISTRIBUTION. NOTE THAT W3 IS 

THE ONLY ONE OF THE FOUR WITH A SINGLE “BEST” KEY, WHILE OWT2 HAS TWO 

“BEST” KEYS THAT ARE AS GOOD AS W3’S “WINNER.”
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Our framework can generate new tunings that belong to a kind of 
minimality class (along with W3 and Young 2) but, at the same time, 
explore different musical possibilities. Furthermore, with our optimality 
method,  we  can  represent  those  tunings  parametrically  as  features 
(weights,  ideal  intervals,  etc.)  corresponding  to  the  constraints  that 
shape the development of historical WTs.

EXAMPLE 2: SEPTIMAL OWTS

Of course this framework can be used to create new and experimental 
optimal tunings, and in doing so, it is interesting and fun to work out 
various  speculative  investigations.  For  example,  what  if  Werckmeister 
had listened to Bach in the morning and Lightnin’ Hopkins at night, 
and become fascinated with the flat minor  thirds  and minor sevenths 
which might suggest the septimal intervals 7/6 and 7/4 respectively? 
Septimal  intervals  have  fascinated  many  composers,  including  Partch, 
Fokker, Harrison and others, and the commonality of septimal intervals 
(particularly the minor  third and minor  seventh) has  been frequently 
conjectured (if difficult to empirically substantiate).30 Table 8 shows the 
result of another experiment in the creation of new tunings in which we 
add septimal  minor thirds and  minor sevenths to  the ideal  interval  set 
while keeping major thirds and perfect fifths pure.

We recorded several  Preludes  and Fugues from the  Well  Tempered 
Clavier in these new septimal tunings, and in OWT1 and OWT2 (along 
with,  for  comparison,  the  conventional  W3 and Young  2)  (Polansky 
2007).

Many of the intervals in these septimal OWTs are unusual, such as the 
quarter-tone  minor  seconds  and  the  flat  minor  thirds  and  minor 
sevenths. However, the usual fifths and thirds are fairly well maintained. 
The resulting tunings, heard in the context of such a familiar musical 
work, will seem strange at first. Yet these tunings are, in some sense, a 
simple,  transparent  extension  of  the  fundamental  premises  of  WT, 
incorporating a new prime in the ideal interval set. They give us some 
idea of how this framework generates new scales according to specific, 
demonstrable criteria (constraints). We like to think that both Bach and 
Werckmeister might have enjoyed these excursions into new tonalities, 
and perhaps even appreciated and understood their underlying ideas.
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SEPTIMAL OWT131

SEPTIMAL OWT2

TABLE 8: “SEPTIMAL OWTS.” TWO SPECULATIVE OWTS WHICH INTEGRATE 

SEPTIMAL INTERVALS, ILLUSTRATING THE USE OF THE FRAMEWORK TO 

GENERATE NEW AND EXPERIMENTAL TUNING SYSTEMS.

PILOT STUDY: THE “CONCEPT” OF SLENDRO

As a further example of how our mathematical framework might be used 
as a means to explore “tuning space,” we consider a tuning system from 
another,  radically  different,  musical  culture:  Central  Javanese  slendro. 
Slendro is a five-tone laras or “tuning,” one of the two main interlock-
ing scales in Central Javanese classical music, or  karawitan. Gamelans 
generally have two sets of instruments, one tuned in slendro, the other 
in seven-tone pelog. Slendro and pelog usually share a common pitch. In 
general, no two gamelans are tuned alike. However, as mentioned ear-
lier,  there  are  well-known,  influential  tunings,  and gamelans  are,  for 
various reasons, sometimes tuned specifically to match another’s tuning 
(Brinner, 52).

However, gamelan musicians and scholars often discuss the qualities 
of different slendro tunings, and it is common for some slendros to be 
considered “better” than others, as well as more appropriate for one or 
more of the three main pathet (roughly: mode) that are used. There is a 
clear  and  strong  concept  of  “slendro,”  or  what  Brinner  (53)  calls  a 
“perceptual  category,”  and  Perlman  and  Krumhansl  (112)  call  a 
“perceptual set.”

Because of  its  unusual  combination of  variability  and strength as a 
concept, slendro has long fascinated musicians of many styles and genres 
(the composer Lou Harrison called it “slippery”). Brinner states: “While 
the ‘spacing’ of [the] pitches varies from one set of instruments to the 
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next, it is not random. . .” (53). Yet it is difficult to find, either within 
the sparse  literature or  the voluminous anecdotal  evidence,  a kind of 
“definition” for slendro that would determine which 5-tone,  more or 
less equally spaced, stretched-octave scale is slendro, and which is not.

There  are,  however,  certain  commonalities  to  documented  slendro 
tunings. Gamelans generally use stretched octaves, and although various 
ranges  are  given  in  the  literature,  the  stretch  seems  to  fall  roughly 
between 5–25 cents.  Octave  stretch also varies  according  to register, 
instrument,  and  even  regional  style.  There  is  also  a  modal  (pathet) 
hierarchy. The three common pathets are named  sanga,  manyura and 
nem. Each emphasizes certain pitches or scale degrees, thought to be 
“more  important”  than  others  in  certain  ways  (often  in  terms  of 
cadence). However, gamelan musicians do not always agree on which 
tones are most important, or how (in a manner similar to discussions of 
European tuning systems).

Sumarsam,  in  his  discussion  of  Sindusawarno’s  mid-Twentieth-
Century  theoretical  work  on  karawitan  describes  a  “hierarchy  of  the 
functions  of  the  tones  in  each  pathet  system.”  According  to 
Sindusawarno: in pathet sanga, the three most important pitches are, in 
descending order, 1, 5, 232; in manyura, 3, 1, 533; in nem, 5, 2, 1. “The 
relationship of the tones is one kempyung [a distance of 4, more or less 
equivalent to a perfect fifth]. In that way, Sindusawarno neatly associates 
kempyung as a function of laras and kempyung as a determinant of the 
tones in each pathet.”34 As in European tuning systems, there is some 
“hierarchy  of  the  functions  of  the  tones  [in  each  pathet  .  .  .]” 
(Sumarsam, 143) The specifics of these tones, hierarchies, and nature of 
their  importance  is  the  subject  of  much discussion,  and  beyond  the 
scope of this paper.35

Thus,  slendro  contains  a  repeat  factor,  modal  hierarchies,  and 
significant  intervals  which  presumably  are  accounted  for  in  a  given 
tuning.  These  are  essentially  the  factors  which  determine  our 
mathematical formalization of temperament. In slendro tuning, much as 
in  that  of  a  European  well-temperament,  repeat-factor,  important 
“keys,” and significant interval relationships must be taken into account. 
Certain  relationships have greater  importance than others,  suggesting 
(while not necessarily proving), that they be tuned more “precisely” in 
the temperament.

Musically,  of  course  there  is  very  little  common  ground  between 
Baroque keyboard music and karawitan. The underlying tuning systems, 
however, seem to be conceptually more similar: the idea of slendro, like 
the  idea of 12-tone WT supports a wide variety of tunings, all used for 
the  same  repertoire.  Interestingly,  slendro  retains  an  important 
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characteristic  lost  in European tunings  when WTs became ETs:  each 
pathet  in  slendro,  unlike  “keys”  in  modern  12-ET,  have  markedly 
different intervallic structures. Manyura sounds different than sanga, in a 
way that is different from the difference between, say, D major and F 
major.

The  classic  “Gadjah Madah”  (GM) study  (Surjodiningrat  et  al.) is 
often cited as a source of data for the consideration of gamelan tunings, 
containing  careful  measurements  of  twenty-eight  gamelans  from 
Jogyakarta and Surakarta (“Jogya” and “Solo”). The advantage of this 
data  is  that  it  is  published,  empirical  (as  opposed to anecdotal),  and 
reasonably accurate.  Perlman and Krumhansl  report that in Perlman’s 
own  “ongoing”  study  of  Javanese  gamelan  tunings,  he  has  found 
“similar variability” to the GM data.36 It is difficult to measure gamelan 
tunings:  instruments  change  their  pitch  over  time;  gamelans  are  in 
various states of repair; the selection of register and instrument makes a 
difference; finally, the time-variant pitch envelope of bronze keys makes 
it difficult to decide exactly  when to measure the fundamental.  While 
several  published  individual  gamelan  tuning  measurements  exist,  the 
GM study  is  especially  useful  as  a  dataset  for  experimentation  using 
various analytic techniques.

Another challenge with slendro analysis is the paucity of pitches: five. 
This seems to create an intrinsic constraint, perhaps emanating from the 
predominantly  linear  and  melodic  style,  resulting  in  a  relatively  even 
intervallic  spread.  All  slendros  are  strictly  proper by  Rothenberg’s 
definition,  or  what  Balzano  calls  coherent.  Consequently,  adjacent 
intervals tend to cluster around the 5-ET 240 cents, perhaps more easily 
distinguished as being “small and large” seconds (Polansky 1984), the 
largest of which are more appropriately described as minor thirds. The 
maximum adjacent  interval  (second)  in the  GM study37 is  266 cents 
(almost  exactly a septimal  minor  third = 7/6 = 267 cents)  and,  the 
minimum is 216 cents. In other words, slendros cluster tightly around 
5-ET. In the GM study the mean octave stretch is 1212 cents (with a 
variance  of  about  11  cents).  The  mean and  variance  of  the  seconds 
(rounded to the nearest tenth of a cent) are shown in Table 9.

To demonstrate how our framework might be used on a pre-existing 
set of data (the GM study), we ran two pilot experiments. In the first, 
we fixed a set of interval weights and a minimal set of ideal intervals, and 
searched for the best-fitting key weights. In the second, we fixed key 
weights and a larger set of ideal intervals (5), and searched for the best 
fitting interval weights.38
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TABLE 9: MEAN AND VARIANCES OF ADJACENT SECONDS (1→2, 2→3, ETC.) FOR 

GAMELANS IN THE GM STUDY. SCALE DEGREES IN SLENDRO ARE NUMBERED 1, 2, 
3, 5, 6. 1' IS THE “OCTAVE” OF 1.

EXPERIMENT 1: FITTING A SET OF SLENDROS TO TWO IDEAL INTERVALS AND 

VARYING INTERVAL WEIGHTS

In Experiment 1, we specified two ideal intervals: 231 cents and 702 
cents for the second and fifth respectively.39 Using those two intervals 
we  tried  four  ratios  of  interval  weights,  setting  all  other  weights  to 
values near zero. We also did the same for “stretched” versions of these 
intervals in proportion to the actual octave of the tuning. In that way, a 
total of eight different trials were run. We used the octave stretches of 
each individual tuning as the repeat factor. For each trial, we searched 
for the best key weights, and recorded the “fit” to each of the twenty-
seven GM scales, measured by the sum of the cents difference between 
the  generated  scale and the  actual  scale.  Next  we ran the  same data 
(without  the stretched intervals)  on twenty-seven randomly generated 
slendros  whose  overall  mean and variances  were  taken from the  GM 
data.

Table 10 shows the fitting error for the GM scales. The two best fits 
for  the  randomly  generated  scales  (1/1  =  4.10;  1/3  =  6.22,  both 
unstretched) were significantly worse than the two best GM scales.

DISCUSSION

We should be careful when interpreting these results,  which are, in 
fact, less interesting to us than the demonstration of a possible, more 
extended use of  the optimization framework  as  a  way of  considering 
temperaments  and tuning systems.  That said,  there  are several  things 
worth  noting.  First,  given  our  assumptions,  the  actual  scales  did 
considerably better than the randomly generated scales, perhaps adding
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TABLE 10: AVERAGE FITTING ERROR FOR VARYING SETS OF INTERVAL WEIGHTS, 
USING TWO IDEAL INTERVALS (8/7, 3/2), FOR GAMELANS IN THE GM STUDY. 

THE WEIGHTING RATIOS TRIED ARE RANKED FROM BEST TO WORST FIT.

further evidence that there is a strong underlying structure to slendro, 
while not necessarily saying exactly what that structure is. Second, the 
unstretched  intervals  performed  better  in  general  better  than  the 
stretched ones, perhaps suggesting that while the octaves are stretched 
(perhaps  to  accommodate  acoustic  phenomenon  (Sethares,  1993, 
1997)), some intonational percept of a second and/or a fifth might be 
reasonably strong,40 and that those intervals are tempered to the octave 
stretch, not vice versa (although this experiment neither proves that, nor 
elucidates how and when this might occur). Similar experiments using a 
2/1 octave might suggest otherwise. Third, the three best fits all show a 
stronger influence of the fifth than the second in the tempering. Many 
more configurations should be tried, and with a larger dataset, to further 
investigate  the  assumption  that  a  simple  just  fifth  is  somehow  an 
underlying factor in slendro. It would be interesting, as well, to match 
the actual  key weights  against  anecdotal  evidence of  how appropriate 
each gamelan is for the three different pathet.

EXPERIMENT 2: USING KEY WEIGHTS TO DISTINGUISH CITIES

In our second experiment, we set four ideal intervals (231, 498, 702, 
996), once again opting for acoustic and/or numerical simplicity. We 
then ran a number of trials using different sets of key weights. Six of the 
most  illustrative  are  shown  in  Table  11.  The  first  trial  used  equal 
weights.  The second through sixth trial  set  one “key” three  times as 
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high as all the others. The final trial used equal key weights for 1, 2, 5, 
and 6, with 3 = 0.

TABLE 11: AVERAGE FITTING ERROR FOR GM STUDY GAMELANS, USING FIXED 

IDEAL INTERVALS AND VARYING KEY WEIGHTS. “3X” MEANS THAT THE “KEY” ON 

THE SPECIFIED PITCH WAS SET 3 TIMES HIGHER THAN ALL THE OTHERS (WHICH 

WERE EQUAL). THE LAST LINE OF THE TABLE SETS ALL WEIGHTS EQUAL, EXCEPT 

FOR THE KEY BASED ON PITCH 3, WHICH IS SET TO 0.

DISCUSSION

The GM study identifies gamelans by city (Solo and Jogya, the two 
predominant courts of classical Central Javanese culture). Since Solonese 
and Jogyanese musical styles (tunings, repertoires, techniques, etc.) are 
often distinguished by gamelan musicians, it seemed interesting to see if 
we  could  distinguish  gamelans  from  different  cities,  if  only  slightly 
(given the sparse data) by their tunings.

Before we used our framework as a mechanism to differentiate among 
slendros,  we  tried  some  more  obvious  techniques.  Simple  clustering 
applied  to  the  twenty-seven  interval  sets  failed  to  generate  a  clear 
geometric distinction between the two cities. However, a graph of the 
intervals  and a look at simple statistics  calculated from the two cities 
shows that,  for  example,  there  is  a great deal  more variation in Solo 
around  the  “middle”  of  the  scale  (pitch  3).  The  maximum  and 
minimum ranges of intervals in Solo and Jogya are {52, 36} and {38, 
21}  respectively.  That  is,  the  variation  in  GM  Jogya  tunings  is 
considerably “flatter” than Solo.

While  these  initial  experiments  were  interesting,  not  surprisingly, 
considering the paucity of the data, they did not enable a clear statistical 
grouping of the gamelans.
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FIGURE 2: STATISTICS OF GM GAMELANS BY CITY. MEANS AND RANGES OF 

ADJACENT SLENDRO INTERVALS FOR JOGYA AND SOLO.

However,  when  we  searched  for  interval  weights  after  fixing  key 
weights  and  ideal  intervals,  we  found  what  might  be  significant 
differences in the fitting error for  each category,41 perhaps  indicating 
more subtle tuning tendencies between the two musical styles. Two of 
the  rows  in  Table  11  are  especially  interesting.  The  largest  spread 
between the two cities occurs when note 6 receives the highest weight 
(although weighting them equal is close). If that fitting error is used to 
classify gamelans as from Jogya or Solo, we achieve a 71% classification 
rate, which is higher than we obtained in our clustering experiments. 
Recall, that in his ranking of intervals for the three pathet, Sindusawarno 
uniquely excludes pitch 6 as an important note (either first, second or 
third) from any of the three pathets.  Although it is unclear how this 
relates to the data in Table 11 it may be due to the fact that since that 
pitch  6  is  in  some  respects  the  least  important  in  terms  of  pathet 
identification,  giving  it  an  unusually  large  value  magnifies  some 
tendency  in  city-specific  tuning  systems.  It  also  might  indicate  that 
making the key weight on pitch 6 high “makes no sense” in any of the 
slendros, and generates in general, much larger fitting errors. The first 
line  of  Table  11,  with  equal  weights,  also  causes  a  large  distinction 
between Jogya and Solo error, and, since this is a tuning concept which 
is at odds with the idea of pathet differentiation via tuning, this large 
difference  might  point  towards  the  same  tendency  as  giving  a  large 
weight to pitch 6.
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Table 11 suggests,  perhaps,  that  given a set  of  simple intonational 
assumptions, the keys on 1, 2, and 5 predominate in the design of the 
tuning.  These  keys  correspond  with  Sindusawarno’s  “winners,” 
preferencing  pathets  sanga  and  nem over  manyura.  Jogya  errors  are 
greater in general, which may be a result of that city’s “flatter” data in 
the GM study. Solo seems to favor the key built on 1 (sanga),  while 
Jogya slightly prefers 5 (nem).

With this discussion we have tried to demonstrate a way in which this 
framework  might  be  used  as  a  new  means  of  forming  and  testing 
hypotheses  in  non-western  musical  tuning  systems.  It  would  be  of 
interest to fold in more data as well as a wider range of initial hypotheses 
in order to engage in a more comprehensive heuristic study.

FUTURE DIRECTIONS

We hope that the ideas presented here will  lead to more work using 
these kinds of mathematical tools in the investigation of tunings. A few 
possibilities are included below.

1)  Further exploration of the parameter space.  Given a specified tuning, 
set of ideal ratios and repeat factor, there is not necessarily a unique set 
of corresponding weightings. Thus it is difficult to determine, from an 
existing tuning (whether it be a well-temperament or slendro) what the 
key and interval preferences might be (or have been), assuming some set 
of ideal intervals. It would be interesting to explore the “geometry” of 
the  weighting  space,  and  investigate  the  significance  of  multiple 
weighting  solutions  from  a  musical,  historical,  and/or  cultural 
standpoint.

2)  Constraint-based  system.  The  interest  and  veracity  of  a  constraint-
based system are to a large extent dependent on the constraints. To say 
we can find an optimal solution for the best possible bridge from one 
side of  the river to the other depends on what “best  bridge” means. 
Musical  problems  are  fuzzier  than  bridge-building  problems.  In  this 
regard, the current framework is proposed as a model in which the set of 
constraints might be modified (in ways often suggested in this paper) to 
reflect  other  interests  in  the  design  of  tuning  systems.  Adding  or 
modifying  constraints  may  affect  the  mathematical  solution(s) 
considerably, as well as the geometry of the weighting space discussed 
above.

For  example,  a  particular  form  of  design  caprice  might  be 
incorporated,  such  as  that  of  desiring  one particular  interval  in  one 
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particular key to be “just so.” In the current framework, this must be 
achieved by carefully setting the interval and key weights. This becomes 
more difficult if there are two or several such intervals. In that case, we 
begin  to  consider  the  modeling  of  tunings  which  aren’t  quite  as 
dependent on the notion of “abstract ideal intervals” and “what keys are 
most  important.”  There  are  other  situations,  of  course,  where  this 
framework doesn’t adequately represent the social, historical, or cultural 
circumstances of a tuning system. We do not model factors like spiritual 
epiphany, or homage, or imitation, and it could be argued that these are 
among  the  most  important  and  interesting  (as  well  as  ineffable  and 
magical) constraints. We believe, however, that this framework accounts 
for  some significant  part  of  what  makes  tuning  systems  “tick,”  and 
reasonably models their evolution, design, and in some sense, why some 
work better than others.

3)  Multiple  Interval  Representations.  Another  useful  addition  to  the 
framework  (as  mentioned  elsewhere,  in  the  notes)  would  be  the 
possibility of having more than one ideal interval for a given position, 
such as the familiar situation of using  either 81/64 or 5/442 for the 
major  third.  Incorporating  this  idea  would  make  the  mathematical 
representation  and  solution  more  complex,  but  might  remedy  some 
unnecessary  awkwardness  in  the  formulation.  For  example,  the 
conventional  diatonic  scale  has  several  types  of  seconds,  thirds,  etc., 
which result from it being a subset of a larger, chromatic system. The 
current framework is, by definition, much better at representing whole 
systems than scalar or modal subsets.

CONCLUSION

What are the implications of this framework for the consideration of the 
notion of a tuning system itself? Clearly, there are many issues involved 
in the development of a tuning system besides the specific criteria used 
here. A mathematical model such as ours does not account for cultural, 
aesthetic, historical, economic, or any number of intangible factors that 
might play a role in the development of a musical tradition.

Nevertheless, it might be proposed that all tuning systems, except for 
those that use rational intervals exclusively, are in fact, tempered. If that 
is true, then the method described here offers  more than a historical 
analysis of the work of Werckmeister and his colleagues. The framework 
becomes, by extension, a general theory of tuning systems.



94 Perspectives of New Music

ACKNOWLEDGMENTS

Thanks to Tim Polashek, who helped formulate some of these ideas in a 
graduate seminar at Dartmouth College long ago; and to Chris Lang-
mead, Jody Diamond,  Peter Kostelec,  and Dennis  Healy for valuable 
advice in this project.



A Mathematical Model for Optimal Tuning Systems 95

APPENDIX A

In this appendix, we explore some of the mathematical properties of our 
framework. In particular, we show that equal temperament is the opti-
mal  tuning  system  if  all  the  weights  are  equal  and  we  discuss  the 
conditions for the uniqueness of our solution.

Our weighted error function is:

First, we assume that all the weights are equal and derive the optimal 
tuning system in this case. A necessary condition at the minimum of the 
error function is that all the partial derivatives are zero. Differentiating 
with respect to ak and simplifying yields:

By setting these equations equal to zero for all  k, we get a system of 
equations that is linear in the unknowns:

To  simplify  notation,  we  will  write  this  linear  system as  Ax=b.  The 
matrix A is full rank and is therefore invertible. The inverse of the matrix 
A is:
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The unique solution to the linear system is x=A-1b.  With the definitions 
of  A-1 and  b given above,  we derive the following expression for the 
scale degree ak:

This result proves that if all the weights are equal, the optimal  ak are 
equal subdivisions of the octave.
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APPENDIX B

This appendix proves that equal temperament is optimal with respect to 
the Rasch tonality measure for any interval Ik.  The diagonals of matrix 
M contain all  instances  of  the interval  Ik.  Let  mk,i denote the terms 
along the diagonal for interval Ik.  The sum of these elements is:

Therefore, the average of the instances of interval k for any scale is equal 
to the equal-tempered interval kω/(n+1).

The  Rasch  tonality  measure  averages  the  absolute  value  of  the 
differences to an ideal interval:

Using the triangle inequality:

Therefore,  for  any  scale,  the  Rasch  tonality  measure  between  the 
intervals  k and an ideal interval  Ik is always greater than the difference 
between the ideal interval Ik and the equal-tempered interval k  ω/(n+1). 
In  other  words,  for  any  interval,  equal-temperament  is  optimal  with 
respect to the Rasch tonality measure, though other tunings may also 
achieve the same minimum.
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NO TE S

1. For example, Jody Diamond (personal communication) points out 
that the RRI (radio station)  gamelan in Surakarta,  Java,  is  widely 
imitated because of  the many broadcasts  and recordings made on 
this set of instruments.

2. The theorist Erv Wilson refers to this as the “interval of equivalence” 
(Burt, 40).

3. For other examples of criteria sets for scales, tunings, and “musical 
pitch  systems,”  see  Erlich;  Krumhansl  (1987);  Burns  and  Ward 
(264); Shepard (1987a); Dowling and Harwood (90–100). The last 
set of authors propose a set of “cognitive constraints on scale con-
struction that seem to operate through much of the world” which 
differs from our framework in its focus on scale, rather than tuning 
system construction.  As  such,  it  takes  into  account  factors—like 
Balzano  coherence (or Rothenberg  propriety), the number of inter-
vals, and the idea of a small, modular interval—less pertinent to what 
Dowling  and  Harwood  call  “tonal  materials”  (our  “tuning 
system”—their use of the term “tuning system” has a distinct mean-
ing). However, our idea of key and interval weights is reflected in 
their “structural hierarchy” of a “modal scale.”

Yasser and others (e.g., Kraehenbuehl and Schmidt) have postulated 
developmental  mechanisms for  tuning system development.  There 
are, of course, many different and interesting examples of composers 
and theorists creating their own best tunings, all of which in a sense, 
attempt  something  like  what  we  suggest  here:  optimization  with 
(what are often artistic) constraints. Partch’s well-known monophony 
is one such example, as are the approaches of Blackwood, Lindley 
and Turner-Smith, and the recent work of Gräf (following Barlow) 
in his method of scale rationalization (see also Carlos).

4. The idea of  a  “scale” or “musical  system” is considered by some 
authors to be a universal of human music. For example, Arom (28) 
says that “each society selects from the sound continuum a set of 
contrastive pitches. These pitches form a system, a musical scale . . . 
itself an abstract model but also the basis for the elaboration of all 
melodies, is the analog for what in a language would be its phono-
logical system.”

5. Regardless,  many  contemporary  composers  and  theorists,  such  as 
Partch, Johnston, Sims, Tenney (e.g., 1987) and Fokker have devel-
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oped tuning  systems  for  their  own use,  with varying numbers  of 
pitches per octave (see Keislar for an excellent survey). A number of 
contemporary composers  working in experimental  intonation have 
used tuning systems with an indefinite, dynamic or adaptive number 
of pitches per octave (for example, see Polansky 1987; 1987b). Lou 
Harrison referred to this approach as “free style” (Harrison 1971, 6; 
Polansky, 1987b). All of these strategies, while important for indi-
vidual composers or smaller, often experimental musical cultures, are 
less effective when the tuning system needs to serve as some kind of 
standard for a musical community.

6. Burt surveys systems that repeat at values other than the octave, and 
describes some associated compositional experiments.

7. In fact, with a very simple alteration, the mathematics described later 
in this paper can eschew the assumption of a repeat factor.

8. Alternative just diatonic scales might use 10/9 for the major second 
(which occurs between the second and third and fifth and sixth scale 
degrees), or 27/16 for the major sixth. While these alterations shift 
the  “wolf  fifth,”  they  have  no  effect  on  the  central  problem 
addressed here.

9. Isacoff calls it “the search for la,” (58) and constructs the following 
metaphor for the problem: “Attempting to force [pure thirds, per-
fect octaves, and perfect fifths] into the same harpsichord or organ 
would be like trying to squeeze various pieces of fine furniture into a 
room too small to accommodate them; no matter where you place 
the exquisite couch, there is simply no room for the elegant loveseat. 
. . . The keyboard thus became a battleground of warring propor-
tions; and the desire to achieve a tuning based on all of the ideal, 
simple ratios an unrealizable fantasy” (67). He writes that musical 
temperament is, in “application . . . similar to the Japanese art of 
bonsai” (95).

10. A  comma is, in terms of our framework, a more general idea, and 
roughly means “the error of an actual interval to an ideal interval.” 
Kennan suggests an algorithm for “optimally distributing” commas 
to “minimize the maximum of the absolute values of the errors of 
all the intervals that we care about.”

11. Personal  communication,  Polansky  and James  Tenney.  Note  that 
Barbour (1948, 550) seems to mean something very similar when 
he refers to “the tuning problem.” Doty (36–38) more specifically 
refers  to the “supertonic problem”: “The problems posed by the 



100 Perspectives of New Music

supertonic  minor  triad  and  the  syntonic  comma  have  provoked 
some  rather  extreme  reactions  from  composers  and  theorists.” 
(Doty, 38). The ideas in this paper are one such “reaction” to the 
generalization of these problems.

12. “Thus there will never be a scale in which all the fifths, or a com-
plete set of fifths and thirds, are correct. The same type of analysis 
shows that any method of constructing a twelve-tone scale by ratio-
nal numbers is doomed to inconsistency.” (Dunne and McConnell, 
109). Several authors, including the latter, have employed the math-
ematical technique of continued fractions in this regard; see Berger; 
Brun;  Barbour  1948;  Rosser.  Dunne  and McConnell  (114) even 
develop a 41-tone to the octave tuning using this approach.

13. Jorgensen (779) defines “wolf” quite generally, as “an interval that 
is considered too far out-of-tune to use in musical performance . . . 
its ratio is complicated.”

14. There  are  at  least  three  common strategies  for  this  compromise: 
equal  temperament,  well-temperament,  and  what  is  often  called 
extended  just  intonation.  Each  approaches  the  approximation  of 
rational  tuning spaces in a slightly different fashion. For example, 
equal-temperaments often search for the minimal even divisions of 
the octave which maximally approximate some desired ratio (such as 
the perfect fifth in 12-ET, or the septimal  minor seventh in 31-
ET). Tenney’s  (e.g.,  1987) use of  72-ET to approximate a large 
number of rational intervals, as well as to explicitly use specific 72-
ET degrees to “stand in” for several such intervals is another, less 
common version of this idea (also see Sims). Well-temperaments do 
something similar, but, for a variety of reasons, relax the require-
ment of equal system-step size. Extended just intonations, like those 
of Johnston, Partch, Tenney, and many others, create intonational 
diversity by having many intervals in the system. Partch’s 43-tone 
monophony, for example, eventually generates  canidae intervals of 
its own because of its small, finite number of ratios and primes (a 
fact  which  Partch  incorporated  into  his  work  to  compositional 
advantage).  While  non-tempered  systems  have  greater  accuracy 
within specific “keys,” they require, in general, a larger number of 
intervals.

15. For brevity, we only show the half-matrix since the other half is the 
inversion  of  those  intervals  around the  octave.  For  the  complete 
matrix, and detailed analysis of the “supertonic problem,” see Doty 
(36–38).
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16. There  are any number of  definitions,  in music theory,  cognition, 
and history for terms like scale, tuning, mode, tuning system, gamut. 
Different authors mean different things and use these words more 
or less interchangeably. A discussion of the usages of these terms is 
beyond the scope of this paper, but in this example we refer to the 
Just Diatonic as a scale because it is a subset of a larger set of inter-
vals. Some of these, like the half-step  16/15, and the minor third 
6/5, do not explicitly appear in this representation. They would if 
the scale were written as adjacent (rather than absolute) intervals: 
1/1 9/8 10/9 16/15 9/8 10/9 9/8 16/15.  The  intervals  do 
appear in the half-matrix, but share diagonals with other intervals of 
different  categories:  both the major  second (9/8) and the minor 
second (16/15) appear in the same diagonals. The interval matrix of 
the  larger  tuning  system  from  which  the  Just  Diatonic  scale  is 
derived, would more clearly distinguish intervals.

17. Rasch says that “Few if any historical tunings have received more 
attention in the literature than ‘Werckmeister III’” (29). Donahue 
says of W3: “It may be the first documented temperament for key-
board instruments that did not have a wolf interval” (26). Similarly, 
our framework is intended to produce tunings which intentionally 
minimize “canidae intervals.”

18. In these preliminary examples, it suffices to show the half-matrix, 
although in  our  mathematical  framework,  for  computational  rea-
sons,  the  error  function  is  taken  on  the  complete  matrix.  The 
interval matrix is symmetric around the repeat factor. Values below 
the diagonal are intervals that span the repeat factor until the next 
occurrence (in this case, two octaves of the tuning), so that each 
“key” is represented by the same number of intervals.

19. The  L1 and  L2 measures are but two in a continuous range of  Lp 

measures, defined by taking the pth root of the sum of the pth pow-
ers (for  any positive real  number  p)  of  the  absolute value of  the 
differences.  Both the  L1 and  L2 functions  measure pitch distance, 
but  other  error  functions,  such as  those  which measure  the  har-
monic distance of the intervals (like the Euler gradus suavitatis (GS) 
function,  the  Tenney  harmonic  distance function  (Tenney,  1988; 
see Chalmers 1983 for a comparison of these two functions), or the 
Barlow  harmonicity  function (Barlow)) are possible as well. These 
functions suggest interesting ways to extend the framework in this 
paper (see, for instance Gräf). John Rahn (personal communication) 
has suggested the possibility of incorporating sign in the error func-
tion,  rather  than  always  using  absolute  value,  an  extension  that 
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might have interesting ramifications for the way the framework re-
presents inversion.

20. In all cases tested, the genetic-algorithm solution with the L1 mea-
sure finds the same solution as the deterministic one with the  L2 

measure (see Software).  However this  non-deterministic approach 
offers the important possibility of easily substituting alternative error 
functions, and experimenting with other aspects of the framework, 
including perhaps, what Rahn (personal communication) refers to as 
the “structure of the error” itself.

21. In the weight matrix W, the key and interval weights are multiplied. 
As a result, a weight matrix cannot be uniquely decomposed into its 
component matrices—the individual matrices can be scaled up and 
down by the same factor without affecting the product. If, however, 
the sets of key and interval weights are constrained to have unit L2 

norm, a weight matrix can be uniquely decomposed into key and 
interval weights.

22. This is due in large part to the particular construction of our frame-
work,  which  incorporates  redundancy.  Each  cell  in  the  matrix  is 
weighted by the product of the key and interval weights, allowing 
for (we hope) a more general and musically intuitive specification of 
tuning system features. However, it is a simple matter to alter the 
way these weights are specified. For example, a single weight matrix 
might be used, specifying a specific value for each cell. In this way, a 
greater degree of weighting specificity can be achieved, although, in 
some cases, at the expense of creating a less useful model.

23. Note that key weights are shown for each “step” of the tuning sys-
tem, which correspond to the top “row” of the interval matrix. In 
other  words,  in  this  example  the  first  “key”  of  the  scale,  which 
might arbitrarily be called “that key starting on C,” has the highest 
weight. Similarly, the “key starting on G” has the next highest key 
weight.

24. Tuning systems are often generated from a small number of impor-
tant  intervals,  like  the  fifth  and  third.  Using  heuristic  search 
algorithms and our framework, we have been able to generate, from 
small sets of ideal intervals (weighting all others to zero) a number 
of  documented historical  and world music scales.  Mathematically, 
this  is not  surprising,  but this  technique suggests  possibilities  for 
future work in the area.
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25. For  example  keys  beginning  on  the  first,  fourth,  and  fifth  notes 
(tonic, subdominant, and dominant) are thought to be “central” or 
inner in tonal music, an assumption usually reflected in the tuning 
systems themselves.  Similar  hierarchies  exist  in other  musical  cul-
tures, such as in Central Javanese music.

26. Chalmers suggests a least-squares fit for the minimization of specific 
interval error, an idea influential to this current framework. Sethares 
(1997, 69–70), introducing his own tuning optimization algorithm 
(also Sethares 1993) based on the best-fit to particular spectra, sur-
veys  a  number  of  tuning  evaluation  methods  (aptly  titled  “My 
Tuning is Better Than Yours”).

27. Rasch’s  function  is  slightly  different  than  the  measure  of  thirds, 
fourths, and fifths used in Table 4.

28. Given some fixed number of pitches and of ideal intervals, it can be 
proved that ET achieves the minimum mean-tempering value, but 
so do other tuning systems (see Appendix B).

29. Given a set of ideal intervals, our framework can generate infinitely 
many scales, including preexisting ones (like W3). For this reason it 
is worth clarifying the methodology of these examples. 

We specified a small subset of ideal intervals (OWT1 = [5/4 4/3 
3/2 8/5]; OWT2 = [9/8 7/6 5/4 4/3 3/2 8/5 12/7 16/9]) and 
searched for an accompanying set of weights (key and interval) which 
generated an optimal scale with the specified minimal mean-temper-
ing value. To perform this search, we used a standard hill-climbing 
algorithm (in the program Matlab).

The weights found by the search algorithm were:

OWT1

interval 1 1 1 150 1600 1 1 50 1 1 1

key 50 60 7 1   7  60 50 60  7 1 7 80

OWT2

interval 1 1 1 10 2000 1 2000 10 1 1 1

key 50 30 10 30 1 30 10 30 50 1 10 1

30. Several theorists and composers have discussed the importance and 
prevalence  of  septimal  tunings.  For  example  see  Erlich;  Fokker; 
Harrison; Doty; Partch. “So it seems natural to try and expand har-
mony by making 7-limit intervals  as  fundamental  harmonic units. 



104 Perspectives of New Music

The new consonant intervals would be 7:4, 7:5 and 7:6.” (Erlich, 
2). Doty (47–54) discusses some historical and “ethnic” seven-limit 
tunings. “Thus, while it may not seem accurate to say that no domi-
nant seventh chords or diminished triads exist in the five-limit, the 
seven-limit versions of these chords offer such superior consonance 
and clarity that they are to be preferred in almost every case . . .” 
(Doty, 44). Fokker’s widely used 31-ET tuning has, in fact a more 
accurate approximation of what Rasch (Fokker, 27) calls the “har-
monic seventh” than the 3/2 perfect fifth. Polansky (1984), citing 
Harrison  and Surjodiningrat  et  al.,  discusses  septimal  intervals  in 
slendro gamelan tunings.

31. Generally, we do not use 0 for weights, but some very small positive 
number (like 0.001). For mathematical reasons whose description is 
outside the scope of this paper, zero weights cause the system to be 
underconstrained.

32. The five pitches  plus the octave  are numbered 1,  2,  3,  5,  6,  1'. 
There is no 4 in slendro (4 and 7 appear in pelog).

33. It is not completely clear that this last note is a 5 in Sumarsam’s 
redrawing of Sindusawarno’s chart, but it appears likely.

34. In pathet nem, which is sometimes said to be a kind of “mixture” of 
manyura and sanga, the kempyung relationships are to 5, not adja-
cent. See also Perlman and Krumhansl: “Only two Javanese interval 
labels  are  commonly  known,  and they  seem to refer  primarily  to 
instrumental technique, not tonal distance” (99).

35. “The  apparently  clear-cut,  formal  simplicity  of  the  logic  of  the 
pathet system belies its actual complexity . . . pathet has stimulated 
and frustrated generations of Javanese theorists and has become one 
of the most heavily researched topics in gamelan scholarship. Mak-
ing sense of it is a task that must await another occasion.” (Perlman, 
42–43).

36. Perlman states that in his own study of “22 fixed-pitch instruments 
in the slendro tuning system, no interval was found to vary less than 
30 cents, and some varied as much as 75 cents.” In the GM study 
(Table 8), the minimum intervallic variation is 32 cents, the maxi-
mum 52 cents.

37. We are only using Table 8 of the GM study: “Classification of 28 
outstanding slendro gamelans in Jogyakarta and Surakarta in accor-
dance  with their  laras  based on the  pitches  of  saron demung or 
gender barung.” Measuring the central octave of the gendér barung 
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is common as a basis for comparing gamelan tunings. Additionally, 
we only use twenty-seven of the twenty-eight gamelans, since there 
seems to be a 10 cent error in gamelan #25 (Gamelan Pengawesari, 
from the Pakualaman Jogyakarta) in the GM study: it should add up 
to 1213 cents (oddly, like gamelan #24), not 1223 cents.

38. It makes sense to fix either key or interval weights: if both are left 
indeterminate,  their  interdependence  makes  experimental  results 
more difficult to interpret. In other words, in searching for either 
one or the other, the search space is significantly smaller.

39. Our use of  the term fifth is a  bit  misleading mathematically:  the 
interval is in fact a spread of four scale degrees. Its Javanese name is 
kempyung, but as it spans more or less the pitch distance of a perfect 
fifth in western music, we use it here to avoid confusion.

40. We used this minimal set (2) of rational intervals for their acoustic 
and cognitive simplicity. For the second,  9/8  or  10/9  would be 
arguably as simple, numerically and acoustically. However both are 
much narrower than any interval in the GM data.

Using only two ideal intervals also parallels our resynthesis method 
for historical WTs above. These intervals (but not necessarily these 
tunings) also seem to be important to musical style (cadences on the 
fifth, frequent movement by seconds) and the tunings are somewhat 
motivated by the statistical data. We hope that further studies will 
experiment with a number of other intervallic possibilities (a likely 
candidate is the interval mentioned above, 267 cents).

41. These numbers are larger than the average errors in  Experiment 1 
because our constraints are stronger: five intervals rather than two. 
For some reason, as well, there seems to be a subtle mathematical 
difference  between fixing key weights  and fixing  interval  weights 
which results in a more difficult search in the former case. This dif-
ference is not yet well understood.

42. The framework might be extended to facilitate the choice of several 
weighted alternatives for certain ideal intervals,  such as the afore-
mentioned second in the Just Diatonic scale. For example, the error 
function might use the minimum error to the 81/64 or 5/4, rather 
than the actual error to one of them.
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