1)\‘;0'.;) agi/

N HMSL Overview (Version 3.1) and Notes on Intelligent Instrument Des:gn

Larry Polansky, David Rosenboom, and Phil Burk
Cemer for Contemporary Music, Mills College, Oakland, CA 94613
david@mills.berkeley.edu

Abstract: 1) HMSL (Hierarchical Music Programming Language) is defined and described, in terms of its

. programming environment, features, and especially, data structures. 2) Some theoretical examples of the use of

" the language by composers (Rosenboom, Polansky) are given, with particular atiention to the language's

- capability for the creation of intelligent “instruments™. This section describes several important morphological
lnnsformanon funcucms that have been used in HMSL as algorithmic composition and performance ideas.

1. Overvnew of HMSL

~ 1.1 Introduction

1.1.1 Purpose of HMSL., HMSL (Hierarchical Music Specification Language) is a programming language

for use by composers, researchers, and performers. It is intended 1o be a flexible and highly general environment,
whose data structures and high-level programming tools provide the user with the resources to realize works and

experiments in a wide variety of styles. One of the primary intents of the HMSL data structure design is to provide a

"non-stylistically based” language for musical form.

1.1.2 Programming Environment. HMSL is wrillen in an object oriented programming environment called
ODE (Object Development Environment), written by Phil Burk. ODE is written in FORTH, and is based on the
SmallTalk object oriented programming model, which includes class inheritance, use of methods, message passing,
and hidden dala for objects. All three levels of programming (FORTH, ODE, HMSL) are available 10 the user at all
times. Many of HMSL's libraries (like the MIDI drivers) do not have 10 be used within the powerful hierarchical

scheduling environment of HMSL itself, but may be called directly from FORTH or ODE. Conversely, any high
level rouline wrilten in HMSL may use simple FORTH or ODE 1ools.

1.1.3 Real-Time Aspect of HMSL. HMSL is both a real-time and non-real-time environment. The
language can be used for computations which are not immediately heard, but in general, HMSL is designed as a
"WYSIWYH" environment -- "what you see is what you hear”. Events and forms a1 any hierarchical level can be
edited while they are being computed and heard. In addition, the generalized stimulus-response environment (see
Perform below) can inieract with.any other part of the system in real-time, so that events and information generated
-externally 1o HMSL may be easily integrated into the environment. All computational processes may be executed in
real-lime, simultancous with editing and performance processes, but of course, time deformations may occur if a

routine is 100 consumptive of CPU time. HMSL incorporates several scheduling techniques for dealing with these
deformations.

1.1.4 Morphological Experimentation. One of the main theoretical and musical intents of HMSL's design
i 1o provide an environment for experiments in musical morphology. By a morphology, we mean any set of ordered
points (not necessarily in lime), where points might refer 10 musical data ranging from the simple (points in a
-. wavelorm, parameters of melodic events) 10 more complex (hierarchical information about other morphologies, or

argumculs 1o morphological transformation routines). The data structures and tools of HMSL are optimized for use
in the creation and ransformation of morphologies.

In HMSL, morphologies ("morphs™) may be created, transformed, and rearranged at any hierarchical level. A morph's
"points"” are most often a list of pointers to other morphs. Trees of any depth may be created, and of any complexity.
Most morphs may contain most other morphs (in HMSL, called "parent” and "child"). The design of each class of

HMSL morph has a different musical motivation, so that even though most can be nested interchangeably, the ways
that dilferent morphs execide are quile different.

1.2 HMSL Organization. HMSL has three main modes of operation: Create, Perform, and Execute.

220 1987 ICMC Proceedings

1.2.1 Create. Creare is the real-time editing mode of HMSL, organized into various screens, At present, there are

~ three such screens: the Shape-Editor, the Action-Screen, and the Custom User-Screen. One more screen, the
" Hierarchy Editor, is part of the HMSL desigr, but because of its experimental features, is not yet included in the
- current release of HMSL.

. The Shape-Edirar provides the capability of editing any dimension of any shape in real-time. Shapes are the

- "lowest-level” morph in HMSL (see the section on HMSL Data Structures below), and the meaning of a shape's
- values are arbitrarily assignable by the user. Thus, the Shape-Editor provides real-time access lo almost any level of
- the system (for example, a shape's data might be the mean values of a given parameter, like duration, in a list of

.: i - higher-level morphs). The shape-editor has most standard editing features (cut, copy, paste, insent, replace, zoom and
" pan) as well as some features specifically related to morphological wransformation (inversion, retrograde,

t:ransposmon and windowed randomization).

: f. ‘The Ac:wn-Screcn allows the user to edit the configuration of the HMSL Perform environment (see below). In this
.. Screen, users may turm on or off stimulus-response actions, alter the priority of execution of these actions, enable or

. disable the PERFORM environment itself, and turn on and off the MIDI parser (an HMSL utility for interpreting
MID1 input).

- The Custom User-Screen provides the user with access 1o the HMSL graphics library for creation of their own

- The Hierarchy Editor will provide the user with the capability to create and edit morph hierarchies, execute and stop
execution of a h;erarchy. and store specific hierarchies to disk. It will be included in the next release of the system.

5 Perl‘orm Perfarm is the HMSL generalized stimulus-response module. It makes use of objects called
~. Actions which allow users to define arbitrary stimulus-response events. Actions may interact with HMSL in any
© way. They may affect other morphs, turn other actions on or off, or directly access any part of the hardware or
_-software. Actions have several features specifically designed for the Perform environment: local and global counters,
procedures for their initialization and termination, priositized execution, and simple protocols for the definition of
_stimuli and responses. Actions are executed by an HMSL morph called the action-fable, which is itself scheduled and
execuled by the HMSL pofymorphous executive (see Execute below).

123 Execute. Execu:e is the part of HMSL responsible for executing morph hierarchies in real-time. This part
of the software is referred to as the polymorphous executive (PE), in that it is capable of reliably scheduling,
execuling, and keeping track of any number of morph hierarchies, each nested to any level. It is the most comp!ex

aspect of the system, and fully use the object-oriented programming techniques of message passing in
commumcaung up and down morph trees.

The PE only dca!s wn.h time" at the very lowest level of the HMSL morph hnerarchy -- the two data structures called
Players and Jobs (see Dala Structures below). The elements of these latter two morphs have specific durations, and
the PE is responsible for seeing that they are accurately scheduled and executed.

. Users may significantly alter the concepi of time itself in HMSL in several ways: by directly affecting the system
clock, or by choosing between the two types of scheduling available (independently selectable for a given morph):
epochal and durational. In epochal scheduling (absolute time), events are executed at specific absolute times, and if a
time deformation occurs, the system will "caich up” to that time. The user may specifiy a “too-late window™ for
events, which tells the PE to ignore events that are 100 late (by the user specified time value). In durational
scheduling (relative time), the time of occurrence of a given event is computed sirictly from the time of occurrence of
a previous evenl. These two scheduling types may be used concurrently in the system -- one morph might be
Gurational and another might be epochal. In addition, the type of scheduling used by a morph may be software

. selected by any other part of the sysiem (for example, actions).

1987 ICMC Proceedings _ 2N

Since most morphs have their own "execution intelligence” (see Data Suructures below), the PE is mainly concerned
"-with keeping track of the morph rees, and execuling the "next” morph when the "previous” morph is done. Often,
.decisions about the sequence of morph execution can be quite complex, but that decision making process is internal

1o the morphs themselves.

1.3 Virtual Device Interface (VDI). The HMSL VDI is designed to separate the intelligence of the system

from the specific form of its output. The output of HMSL may be used to control MIDI, analog sound generation,

local sound of its host computer (as is the case with the Macinwsh and Amiga implementations), graphics and video,

special purpose hardware, to generate numeric output for conversion to traditional music nolation, or for anything
else the user might define.,

The VDI is comprised of user and system defined instruments, HMSL provides users with a set of tools for
designing these instruments, as well as some standard instruments themselves (for MIDT and "local” sound on the
Amiga and Macintosh). Instruments have their own intelligence, including the ability (o transiate HMSL generated
morphological data 1o the specific form needed by devices. In this way, HMSL may be thought of as a
"compositional data engine”, whose output is completely customizable by users through the VDI,

1.4 HMSL Data Structures (Morphs))
1.4.1 Shapes. Shapes are n-dimensional sets of points, whose values have no inherent meaning inside the shap
itself. Shapes are raw data used by other morphs. Many of the methods defined for shapes are concerned with

- morphological transformation, and most can be used interactively in the shape-editor. Shapes may not be executed,
but must be put in players, which interpret their data 1o the VDL

1.4.2 Collections. Collections are the basic hierarchical morph, from which all other morphs are defined.
~ Collections may contain as "children” most other morphs, including jobs, players, productions, structures, -
istructures, and other collections. Several methods are defined for collections which are inherited by other morphs.
*The two mosl important of these concern the use of a repeat-count (specifying how many umes 10 execute the

collection) and a nodal weight (a value associated with the collection often used for determining likelihood of
execution by a "parent” morph),

" There are two types of collections: paralle! and sequential. Parallel collections execute their children simultancously.
. Sequential collections execute their children one afier another. Parallel and sequential collections may be nested inside
each other in any way, to form any possible type of tree.

 1.4,3 Structures and Tstructures. Structures are collections with an added capability for execution
intelligence, called a behavior. Behaviors are user defined routines which determine the sequence of execution of a
structure’'s children. Any morph that can be put in a collection may be put in a structure {including other structures).
. Several default behaviors are defined by the system, and user defined behaviors may be of great complexity.

Tstructures are structures with an added nodal tendency grid, which may be used by the tstructure’s behavior to
~ determine likelihood of execution of one child after another (like a simple first order transition probability matrix).

However, this grid may be used by the tstructure (or any other part of HMSL) in any way the user wishes. There are
methods defined for editing that grid as well.

1.4.4 Productions. Productions are collections which do not contain other morphs, but which contain user

defined routines as their "children”. These routines are executed when the production is executed, and take control of
the sysiem until they are finished. Productions are typically used to create or transform shapes in real-time, but they

may have a wide variety of other uses. In general, they are the utility by which users may imbed their own software .
-inside a hicrarchy. Productions may be put in collections or structures 10 be executed hierarchicaily.

1.4.5 Jobs. Jobs are productions which have a duration associated with their function. A job thus has a concept
of time, and is scheduled repeatedly by the PE uniil it is turned off (by itself, or some other part of the system). Jobs

222 1987 ICMC Proceedings

may be put in collections or structures, but, like productions, may not contain other morphs. They may however,
communicate direcly with the VDI by calling instruments (see players, below).

1.4.6 Players. Players are jobs with an associated instrument, and associated shapes. The player is the niorph
used most typically for interpreting shape data in time, and sending that data to the VDI {or more specifically, the

Ainstrument in use by that player). Players, like jobs, may not contain other morphs, but may be contained in
<ollections or structures,

1.4.7 Actions. Actions are the basic morph of the stimulus-response environment (see Perform above). They
are not typically used inside any other morphs.

1.5 Current and Future Implementations. HMSL Version 3.1 is currently implemented on the
Commodore Amiga and Apple Macintosh Plus computers. Plans exist to implement HMSL on more powerful
workstations (like those of Sun Microsysiems, the Apple Maciniosh II, or the NeXT machine).

Significant additions to the standard system in the future will include implementation of morphological metrics
(distance functions between morphs), "concept spaces” (Rosenboom's term for the organization of high level
morphological transformation trajectories, described in Section 2), more robust editing (including the aforementioned

hierarchy editor, and a tstructure editor), and suppon of emerging standards and protocols for signal processing,
sampling, and software synthesis files.

2. Notes on HMSL as an Intelligent Instrument

2.1. Forms for representing musical knowledge. HMSL encourages the user to treal musical entities as
morphologies such as shapes, unils that represent paramelric contours. The KMSL data structure design described
above does not attempt o adapt itself to a priori notational or stylistic conventions. This facililales an open-ended
experimental environment. The design of HMSL presupposes that for experimental purposes, the use which may be
made of a representation is more important than the representation's form or notation.

HMSL's data structures tend to be representative of a cognitive model of music along the lines of Anderson's (1983)
“tri-code™ model for the ACT programs, Temporal strings, which encode a set's linear order, are reflected in shapes,
collections, structures, and the othcr non-"intelligent” morphs. Spatial images are implemented in the various
hierarchical configurations, like collections of collections, or shapes whose multi-dimensional parametric data
represents higher level musical forms, Abstract propositions in HMSL can be casily defined by productions, actions
(which may interact), behaviors, or jobs, or in more complex definitions of relatedness between morphs (like
morphological meirics, or the concept spaces described below).

The cognitive modclling focus is based on the idca that powerful musical sofiware tools should support individual
compasers' creation of abstract musical models (see Rosenboom, 1987¢). We hope thal this approach 1o sofiware
will promote individuality in computer music. One way that this is achieved in HMSL is in the design of HMSL
instruments which mirror or, in fact, animate the cognitive models of music on which the works are based.

2.2. Real-time editing, shapes as high-level data streams. The HMSL shape-editor can be a powerful
tool for live performance, especially when data is used for directing high-level processes. Users may directly sculpt
values which are used as arguments by productions, behaviors, or aclions; or these values may serve as deterministic
or probabilistic cullines of compositional macro-structure. Even at lower levels, HMSL's editing screen can be used
in performance for direct manipulation of musical patterns in effective ways. Rosenboom has made extensive use of
this capability in the work, Systems of Judgment (Rosenboom, 1987), in which data was used 10 direct processes in
a sampling insirument, (Emulator I1+HD), and Polansky (1987) has devised multi-dimensional "instruments” in this

screen to simultaneously and preciscly control nine parameters of a commercial signal processor (Roland DEP-5) ina
live performance work entitled Cocks Crow, Dogs Bark...

2.3 Intelligent and heuristic systems of actions. HMSL's Perform environment allows for the creation

1987 ICMC Proceedings 223

" of a wide variety of stimulus-response mappings. Direct, fixed stimulus-response mappings are casy to implement,
- as is the less obvious notion of an action network, where actions can activate each other’s stimuli in patterns which
. fan out in tree-like arrangements so that simple actions can cascade into complex responses. Other actions can
activale and deactivale various nodes along this network [acilitating or inhibiting the cascading process. Polansky's
" work entiled Simple Actions uscs the perform environment in a way inspired by Minsky's "society of mind” —a
" multitnde: of simple but interactive intclligences (actions) produce complex larger results. Further ideas being
*-explored for improvising instruments involve heuristic Jearning networks. In this case, aclions are combined with
* tstructures and behaviars, whose tendencies and weights influence how actions call each other. Other actions provide
reinforcing or inhibiting feedback 1o alter the iendencies and weights, directing the action network iowards more and
more leamed responses.

2.4, Dynamic generation of musical hierarchies. Rosenboom’s work in progress, On Being Invisible II,
uses this feature of HMSL. In this piece, significant changes in a musical output siream are analyzed for there ability
to evoke event relaled polentials (ERPs) from the human brain. The results are used to segment the musical outpul
and create real-time instantiations of a structural hierarchy using HMSL's collections and structures. The statistical
trends seen in the ERPs are extracted and used lo provide feedback Lo the heuristic action network described above.

2.5 Productions, interpolators, melisma and ornament generators. This process emphasizes the use
of productions and behaviors, Productions may be defined which interpolate between elements in a shape by
inserting predefined contours, also defined as shapes, between those elements. These can be prototypes intended 1o
add ornaments or melismas from a limited, precomposed set to an otherwise unadorned sequence. This process
requires that the end points of the inseried shapes be scalcd so as to connect elements in the object smoothly
together. Behaviors can be used (o choose melismas or ornament shapes according 10 probabilities or other
algorithms. Finally the whole process can be interactively turned on and off in performance by actions.

2.6. Parametric Shape Transformations, Three recent compositions by Rosenboom Champ Vital (Life

Field), for violin, piano, and percussion, (1987), Zones of Influence, five movements for percussion and computer
music sysiem, (1984-6), and Systems of Judgment, a large dance score for electronic and acoustic sources, (1987), all
* involve systems of parametric shape transformation with HMSL procedures. Some of these processes are also

implemented with structures designed [or improvisation with computcrized instruments. Three examples of these
types of processes are described below.

= 2,61, "Origin® to "Target” evolution by stochastic trajectories in a concept space. This process
'~ involves the evolution of a shape from an origin to a farger. A combination of sliding scale factors and stochastic

methods are used to produce a series of mutated or bent shapes which sound less and less like the origin and more and
more like the targel.

First, iwo input shapes are entered, either via the shape-editor, typing, or by reading MIDI input using the HMSL
midi-parser , from a keyboard or othcr gesture capluring device, (like the recently introduced "Air Drums™). These
- shapes become the origin and target. Specially defined HMSL actions instantiate shapes in repsonse to stimuli, and
call productions to fill the shapes by a mutation algorithm. The shapes are placed in a collection, and are output via
an ' HMSL player to an HMSL instrument. The scale factors are then updated and the process of mutation and output

- repeated.

Rosenboom's mutation algorithm is based on the following equation:
A =105, +T;5 + G D5 |
Where, A; = the ith element of the mutatcd shape
- : O = the ith element of the origin shape
T; = the ith element of the 1arget shape
G = a Gaussian distributed random variable

224 1987 ICMC Proceedings

S, = origin scale faclor
Ty = larget scale faclor
‘ S, = randomness or mutation scale factor
and Drisa difterenc; function computed thus,
‘ " Dp=(InlA; - Ajj+11)Dy
where Dy is a user suplied difference function scale factor.

The dilference function is included so that the amount of the random variable included in the computalion is sensitive
to the relative disjunctness of the shape in a particular region. Relatively smooth regions will tend to stay smooth,
and relatively disjunct regions will be subject 10 more unpredictable variations.

Various mutations can be created by plugging in values for the various scale factors. In order o create a sequence of
such mutations a cycle of Gaussian weighted scale factor changes is used. The Gaussian function,

Gr = «1~2r)e(°-582)) 2.506633 Gs

normalized for a maximum amplitude of 1, is evaluated for values of g as follows: S, the oriyin scale factor is
computed for g ranging from 0 to -3.2, a decreasing function; §;, the targel scale factor is computed for g ranging
from 3.2 to 0, an increasing function; and §,, the randomness scale factor is computed for g ranging from -3.2 to
3.2, an increasing then decreasing function. Gs and Dy are input by the user at run time according to taste. Other
HMSL shapes could be used to store functions representing scale factor changes as well and then may be edited in
real-time. .

The resulting mutated shapes are then compared 10 the origin and target shapes by means of the standard linear
correlation function,

C= N¥xy - ¥x3y
- YINDEEOH VINZY2ZEnd

where x and y represent the corresponding elements of two shapes of length N.

This correlation is sensitive to the "up and down” qualities of the shapes' contours, though high correlation values
may not always accurately reflect the notion of two shapes "sounding alike". An interesting exampie relating to
musical perceplion involves the way this correlation measures inversion. Two shapes which are miror inversions of

~each other produce a correlation coefficient of -1. Pesceptually, one could argue thar two shapes of this kind are more
closely related than two shapes with a positive C but less obvious correspondence in contour. The absolute value of
'C may be used if one considers musical inversion as a perceptual invariant. Polansky's (1987) work on
morphological metrics explores some other measures of shape transformation, and many of these have been-
experimentally implemented in the HMSL environment.

After the correlation coefficients of a series of pairs are computed, they are plotted in a concept space. This plots a
"trajectory” of transformations moving from origin to target. The coordinates of the space measure correlation to the
orgin and target shapes and the distances between points provide an approximate representation of similarity. The
perceptual qualities of a given trajectory are then considered to be those of a high-level shape, which may be then
edited in HMSL as a separate musical entity. The concept space in HMSL is more specifically a collection whose
order is determined by the above correlation function. Many such collections can be created, all with different
qualities, and stored in another collection (at a "higher” hierarchical level) for performance. Actions may activate the

. mulation process, select or modify scale factors, cause scale factors o be selected from other HMSL shapes, output
- shapes, or read in new shapes.

1987 ICMC Proceedings 225

0
Fiano -

Trajectoty ,
Nl N M

L TRercussion
o | 'ﬁtjntenes '

i : \)

- ,
§3 ‘~', 3 T
A\
)| * |

g
o
-4

Y'n&n
o ""ﬁtn rttﬂj l‘\l..r

54

-co

Figure 1: Visualization of a 4-dimensional concept space used in the composition of David Rosenboom'’s
Champ Vital (Life Field), for violin, piano, and percussion (1987). A counterpoint sysiem is generaled as
transformed shapes are produced which lie along the wajectory lines shown for each instrument. The figure is
reposilioned in Lhe space to oulline trajectories which occur in various sections of the work. C,= correlation with
origin shape, C, = cormelation with target shape, Ml, = mutual information with origin shape, Ml = mutual

information with target shape, O = origin shape, T = 1argel shape, and 51, 52, §3 and $4 = other anchor shapes
for various trajectories. Note that negative correlation values result from interval direction inversion while mutual
information values are always positive.

2.6.2. Non-linear transformations as generators of contrapuntal forms. The second method of
transformation involves the use of functions implemented with HMSL translators, user-definable functions which
accept a value and return another value according 10 a function or a lookup table. Transformation functions can be
- developed which generate various forms of contrapunial variation or omamentation. In Champ Vital (Life Field),
" (Rosenboom, 1987), wwenty or so translators are devised which produce melodic variations like interval
augmentation, interval inversion, various types of contrary and warped contrary and similar motion, interval size
complementing, range splitting, scale quantization, and ornamentation. These melodic transformations are combined
~ with the mutation processes described above. The results are then maped into a four-dimensional concept space in
which two new additional axes represent a value referred to as mutual information, a concept from algorithmic
information theory. The mutual information content of two pattems, A and B, is defined 1o represent the extent to
. which knowing A helps to calculate B, (Chaitin, 1979). The mutual information content of a new pattern, generated
. by means of a translator, is ploited with respect to the origin and target shapes as described above. To simplify
things, the mutual information of two sequences, MI(A:B), is in this case produced by rank ordering the
transformation functions used 1o generate one patiern from the other according to their complexity, ie. MI(A:B) =
I(A) - 1(5Tg), where T is the translator which transforms A into B.

These transformation functions are used in four ways for melodic sequences, 1) pitch height of A determines index
into the ransformation function with that function value determining the piich height of B, 2) pitch difference
(interval size) of A determines index with the function value determining the pitch height of B, 3) pitch difference of
A determines index and function value deiermines the pitch difference (interval) of B, and 4) pitch height of A

226 1987 ICMC Proceedings

" determines i}]dex and function valuc determines the pitch difference of B.

Once the four-dimensional concept space is determined, a plot like that shown in Figure 1 is created. This plot shows
some aspects of the overall form of Chant Vital (Life Field), (Rosenboom, 1987).

A very interesting variation on the above process involves imbedding the translalors inside a feedback loop where the
transformed shapes are fed back as input shapes 1o ihe same translators. The results of these processes tend to group
themselves into several catagories. One kind of feedback process explored in the above mentioned trio involves
relatively simple transformation functions with small "bumps”. These bumps tend to replicate themsclves internally
in smaller and smaller structures over several ilerations of the process, producing a kind of melodic arnamentation.
Simple curves tend 1o become sharper (increase in curvature). A second type produces a kind of formal "flip-flop”
(reciprocal process), often producing aliermate inversions of interval direction with sharpening linear curvature. A

third type of feedback process, using relatively complex translation functions, produces intricate inner growth of

 self-similar patterns while prescrving the outer macro-form of the transformation function. All three of these
- feedback systems can ususally be inititiated by simple seed {unclions.

~ An important performance consideration lies in the fact that the wransformation functions used by the translators can
be edited in real-lime in HMSL. Again, aclions, productions, and behaviors may select shapes and translators and
direct outpul.

References
Anderson, J.R.,The Architecture of Cognition, Harvard University Press, Cambridge, 1983 _
Burk, P., "HMSL - An Object Oriented Programming Language”, Robocity News, Volume Ili, Issue 4, May 1987
Chaitin, G., "Godel's Theorcm and Information”, International Journal of Theoretical Physics, 22, pp. 041-954, 1982
Cox, Brad J., Object Oriented Programming: An Evolutionary Approach, Addison Wesley Publishing Co., 1986
Polansky, L., "Morphological Metrics: Introduction to a theory of formal dislances”, paper given at the International
Computer Music Conference, 1987, Urbana, Hlinois
Polansky, L., "Distance Musics I-VI”, (contains Simple Actions) in Perspectives of New Music, Special James
Tenney Packet (Polansky and Rosenboom, guest editors), Volume 25 i1, Spring, 1987
Polansky, L., "The HMSL Experimental Intonation Environment”, in 111, Jrnl. of the Just Intonation Network, Vol.
-3 #1, Winter 1987
Polansky, L., Burk, P., Marsanyi, R., and Hays, D., IMSL Version 3.1 Programmer’s Manual, available with
HMSL sofiware, Frog Pcak Music, Oakland, 1987
Polansky, L., Cocks crow, dogs bark ... , (for three performers, HMSL, and signal processor), Frog Peak Music,
. Oakland, 1987
Polansky, L., Rosenboon, D., "HMSL (Hicrarchical Music Specification Language), A Real-Time Environment for
_Formal, Perceptual, and Compositional Experimentation”, in the Proceedings of the International Computer Music
" Conference, Simon Fraser University, Vancouver, 1985, published by the Computer Music Association
Rosenboom, D.: "On Being Invisible", Musicworks 28, , Toronto, Summer, 1984
Rosenboom, D., Zones of Influence, five movement work for pescussion, computer music system and auxiliary
‘melody instrument parts, David Rosenboom Pub., Piedmont, CA, 1984-86)

Rosenboom, D., Systems of Judgment, 65-minutc work for a varicly of electronic, acoustic, and compuler instrument.
sources, made for the dance and sculpture work of the same name, David Rosenboom Pub., Piedmont, CA, 1987a
Rosenboom, D., Chant Vital (Life Field), violin, piano, and percussion, David Rosenboom Pub., Piedmont, CA,

1987b
Rosenboom, D., "A Program for the Development of Performance Oriented Electronic Music Instrumentation in the
Coming Decade: "What You Conceive is What You Get™, in Perspectives of New Music, Vol. 25 111, 1987¢

June, 1987

1987 ICMC Proceedings 227

