Classification, characterization, and

analysis of tetrachords

THIs CHAPTER CONTAINS a complex mixture of topics regarding the descrip-
tion or characterization of tetrachords. Some of the concepts are chiefly
applicable to single tetrachords, while others refer to pairs of tetrachords or
the complete tetrachordal space. The most interesting of the newer meth-
ods, those of Rothenberg and Polansky, are most usefully applied to the
scales and scale-like aggregates described in detail in chapter 6. Moreover,
Polansky’s methods may be applied to parameters other than pitch height.
The application of these techniques to tetrachords may serve as an model for
their use in broader areas of experimental intonation.

The first part of the chapter is concerned with the historical approach
to classification and with two analyses based on traditional concepts. These
concepts include classification by the size of the largest, and usually
uppermost, incomposite interval and subclassification by the relative sizes
of the two smallest intervals. A new and somewhat more refined class-
ification scheme based on these historical concepts is proposed at the end
of this section.

These concepts and relationships are displayed graphically in order that
they may become more intuitively understood. A thorough understanding
of the melodic properties of tetrachords is a prerequsite for effective com-
position with tetrachordally derived scales. Of particular interest are those
tetrachords which lie near the border of two categories. Depending upon
their treatment, they may be perceived as belonging to either the diatonic
or chromatic genera, or, in other cases depending on the CIs, to either the
enharmonic or chromatic. An example is the intense chromatic or soft
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diatonic types, where the interval near 250 cents may be perceived as either
a large whole tone or a small minor third. This type of ambiguity may be
made compositionally significant in a piece employing many different
tetrachords.

The middle portion of the chapter deals with various types of harmonic
and melodic distance functions between tetrachords having different inter-
valsor intervallic arrangements. Included in this section is a discussion of the
statistical properties of tetrachords, including various means (geometric
mean, harmonic mean, and root mean square; see chapter 4) and statistical
measures of central tendency (mean deviation, standard deviation, and var-
iance). Both tabular and graphical representations are used; the tabular is
useful to produce a feeling for the actual values of the parameters.

These concepts should be helpful in organizing modulations between
various tetrachords and tetrachordal scales. For example, one could cut the
solid figures generated by the various means over the whole tetrachordal
space by various planes at different angles to the axes. The intersections of
the surfaces with the planes or the interiors of the bounded portions of the
figures of intersection define sets of tetrachords. Planes parallel to the bases
define tetrachordal sets with invariant values of the means, and oblique
planes describe sets with limited parametric ranges. Similarly, lines (geo-
desics) on the surfaces of the statisical measures delineate other tetra-
chordal sets, These techniques are similar to that employed by Thomas
Miley in his compositions Z-View and Distance Music, in which the inter-
. sections of spheres and planes defined sets of intervals (Miley 1989).

The distance functions are likewise pertinent both to manual and algo-
rithmic composition. James Tenney has used harmonic and melodic dis-
tance functions in Changes: Sixty-four Studies for Six Harps, a cycle of pieces
in 11-limit just intonation, Polansky’s morphological metrics are among the
most powerful of the distance functions. Polansky has used morphological
metrics in a number of recent compositions, although he has not yet applied
them to sets of tunings (Polansky, 1991, personal communication). His
compositions employing morphological metrics to date are 17 Simsple Mel-
odies of the Same Length (1987), Distance Musics I-VI (1 987), Duet (1989),
Three Studies (1989) and Bedbaya Sadra/Bedbays Guthrie (1988-1991).

In the absence of any published measurements known to the author of
the perceptual differences between tetrachordal genera and tetrachordal
permutations, the question of which of the distance functions better models
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perception is unanswerable. There may be a number of interesting research
problems in the psychology of music in this area.

The chapter concludes with a discussion Rothenberg’s concept of pro-
priety as it applies to tetrachords and heptatonic scales derived from tetra-
chords. Rothenberg has used propriety and other concepts derived from
his theoretical work on perception in his own compositions, i.e., Inbarmonic
Figurations (Reinhard 1987).

Historical classification

The ancient Greek theorists classified tetrachords into three genera
according to the position of the third note from the bottom. This note was
called lichanos (“indicator”) in the hypaton and meson tetrachords and
paranete in the diezeugmenon, hyperbolaion, and synemmenon tetrachords
(chapter 6). The interval made by this note and the uppermost tone of the
tetrachord may be called the characteristic interval (CI), as its width defines
the genus, though actually it has no historical name. If the lichanos was a
semitone from the lowest note, making the CI a major third with the 4/3,
the genus was termed enharmonic. A lichanos roughly a whole tone from
the 1/1 produced a minor third CI and created a chromatic genus. Finally,
a lichanos a minor third from the bottom and a whole tone from the top
defined a diatonic tetrachord.

The Islamic theorists (e.g., Safiyu-d-Din, 1276; see D’Erlanger 1938)
modified this classification so that it comprised only two main categories
translatable as “soft” and “firm.” (D’Erlanger 1930; 1935) The soft genera
comprised the enharmonic and chromatic, those in which the largest
interval is greater than the sum of the two smaller ones, or equivalently, is
greater than one half of the perfect fourth. The firm genera consisted of the
diatonic, including a subclass of reduplicated forms containing repeated
whole tone intervals. These main genera were further subdivided according
to whether the pykna were linearly divided into approximately equal (1:1)
or unequal (z:2) parts. The 1:1 divisions were termed “weak” and the 1:2
divisions, “strong.”

These theorists added many new tunings to the corpus of known tetra-
chords and also tabulated the intervallic permutations of the genera. This
led to compendious tables which may or may not have reflected actual

musical practice.
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Crocker’s tetrachordal comparisons

Richard L. Crocker (1963, 1964, 1966) analyzed the most important of the
ancient Greek tetrachords (see chapters 2 and 3) in terms of the relative
magnitudes of their intervals. Crocker was interested in the relation of the
older Pythagorean tuning to the innovations of Archytas and Aristoxenos.
He stressed the particular emphasis placed on the position of the lichanos
by Archytas who employed 28/27 as the first interval (parhypate to 1/1) in
all three genera. In Pythagorean tuning, the chromatic and diatonic par-
hypatai are a limma (256/243, 9o cents) above hypate, while the enhar-
monic division is not certain. The evidence suggests a immatic pyknon, but
it may not have been consistently divided much prior to the time of
Archytas (Winnington-Ingram 1928).

Archytas’s divisions are in marked contrast to the genera of Aristoxenos,
who allowed both lichanos and parhypate to vary within considerable
ranges. With Archytas the parhypatai are fixed and all the distinction
between the genera is carried by the lichanoi. These relations can be seen
most clearly in §-1, 5-2, and 5-3. These figures have been redrawn from
those in Crocker (1966).

This type of comparison has been extended to the genera of Didymos,
Eratosthenes and Ptolemy in 5-4, §-5, and 5-6. The genera of Didymos and
Eratosthenes resemble those of Aristoxenos with their pykna divided in
rough equality.

Ptolemy’s divisions are quite different. For Aristoxenos, Didymos, and
Eratosthenes, the ratio of the intervals of the pyknon are roughly 1:1,
except in the diatonic genera. Ptolemy, however, uses approximately a 2:1
relationship.

Barbera’s rate of change function

C. André Barbera (1978) examined these relations in more detail. He was
especially interested in the relations between the change in the position of
the lichanoi compared to the change in the position of the parhypatai as one
moved from the enharmonic through the chromatic to the diatonic genera.
Accordingly, he defined a function over pairs of genera which compared the
change in the location of the lichanoi to the change in that of the par-
hypatai. His function is (lichanos; — lichanos;) / (parhypate; — parhypate;)
where the corresponding notes of two tetrachords are subscripted. This
function is meaningful only when computed on a series of related genera
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5~X. Archytas’s genera. These genera have a con-
stant 28/27 as their parhypate.

5-3. Aristoxenos’s genera, expressed in Cleontdes’s
parisrather thanratiss. One part equals 16,667

ENHARMONIC
28/27 36/35 5/4 cents.
o 63 112 498
ENHARMONIC
CHROMATIC
28/297  243/224 32/27 50 100 500
o 63 204 408 3+ 3+ 24 PARTS
DIATONIC SOFT CHROMATIG
28/27 8/3 o/8 67 133 500
o 63 204 498 4 + 4+ 22 PARTS
HEMIOLIC CHROMATIC
75 I50 500
4.5 + 4.5 + 21 PARTS
INTENSE CHROMATIC
5-2. Pythagorean genera. These genera are tradi- Too 00 s00
tionally attributed to Pythagoras, but in fact are of 6+ 6+ 18 PARTS
Babylonian origin (Duchesne-Guillemin 1963,
1969). The division of the enbarmonic pyknon is not SOFT DIATONIC
known, but several plausible tunings are listed in the Too 250 500
Main Catalog. 6+ 9+ I§ PARTS
INTENSE DIATONIC
ENHARMONIC s s —
I 81/64 3 3
—_—— 6+ 12 + 12 PARTS
o ? go 408
CHROMATIC
256/243 2187/2048 32/27
o 90 204 498
DIATONIC
256/243 9/8 o/8
° 90 294 498
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5-4. Didymos’s genera. Didymos’s chromatic is
probably the mast consenant tuning for the 6/5

genus. His digtonic differs from Prolemy's only in the 5-6, Ptolemy’s genera. Only Prolemy’s own genera
order of the 9/8 and 10/9. areshown. Prolenty's tonic diatonic is the same as
Archytas’s diatonic. His ditone diatonic is the
Pythagorean diatonic,
ENHARMONIC
32/31 31/30 5/4
o §5 1I2 498 ENHARMONIC
46/45 24/23 5/4
CHROMATIC o 38 113 498
16/15  15/24 6/5
o 11z 183 498 SOFT CHROMATIC
28/27  15/14 6/5
DIATONIC o 63 182 498
16/15 10/9 o/8
o 112 204 498 INTENSE CHROMATIC
22/21 12/11 7/6
o 81 232 498

SOFT DIATONIC
21/20 10/9 8/7

o 85 267 498

5-5. Eratosthenes’s geners. Eratosthenes’s diatonic
INTENSE DIATONIC
is the same as Ptolenty’s ditone diatonic.

16/15 0/8 10/9
o 112 316 498
ENHARMONIC EQUABLE DIATONIC
:10_/39_3_9_/38 19/15 I2/11 11/10 10/9
© 44 89 498 o I51 316 498
CHROMATIC
20/19  19/18 6/5
) 89 183 498
DIATONIC
256/243 9/8 9/8
o 90 294 498
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§~7. Barbera’s function applied to Aristoxenos’s and

Prolemy’s genera.

SOFT CHR./ENH.
SOFT CHR./ENH.

HEM. CHR./SOFT CHR,
INT. CHR./SOFT CHR.

INT, CHR./HEM. CHR.
INT. DIA/INT, CHR.

§-8. Ratio of lichanos to parhypate in Aristoxenos’s

and Prolemy’s genera.

2.0

ENHARMONIC R 2.047
ot 1.474

mmsmn 2.0
o 2.580

SOFT CHROMATIC

INTENSE CHROMATIC

SOFT DIATONIC

INTENSE DIATONIC

HEMIOLIC CHROMATIC
TONIC DIATONIC P
DITONE DIATONIC ¥

EQUABLE DIATONIC ¥

B ARISTOXENOS
# PTOLEMY
% RATIO (PTOLEMY/ARISTOXENOS)

such as Aristoxenos’s enharmonic and his chromatics or on the cor-
responding ones of Ptolemy. The extent to which such calculations give
consistent values is a measure of the relatedness of the tetrachordal sets.

In §-7, the results of such calculations are shown. The value for Aris-
toxenos’s non-diatonic genera is 2.0. Ptolemy’s genera yield values near 3.0,
and the discrepancies are due to his use of superparticular ratios and just
intonation rather than equal temperament. The proportion of the Ptol-
emaic to the Aristoxenian values is near 1.4.

These facts suggest that both theorists conceived their tetrachords as
internally related sets, not as isolated tunings. Presumably, the increase
from 2.0 to about 3 of this parameter reflects a change in musical taste in
the nearly 500 years elapsed between Aristoxenos and Ptolemy.

Both ancient theorists presented additional genera not used in this
computation. Some, such as Aristoxenos’s hemiolic chromatic or Prolemy’s
equable diatonic, had no counterpart in the other set. Ptolemy’s soft dia-
tonic appears to be only a variation or inflection of his intense (syntonic)
chromatic. His remaining two diatonics, the tonic and ditonic, were of
historical origin and not of his invention. The same is true of Aristoxenos’s
intense diatonic which seems clearly intended to represent the archaic
ditone or Pythagorean diatonic.

A comparison of the corresponding members of these two authors’ sets
of tetrachords by a simpler function is also illuminating. If one plots the
ratio of lichanos to parhypate or, equivalently, the first interval versus the
sum of the first two, it is evident that Aristoxenos preferred an equal divi-
sion of the pyknon and Ptolemy an unequal 1:2 relation. These preferences
are shown by the data in 3-8, where the lichanos/parhypate ratio is 2.0 for
Aristoxenos’s tetrachords and about 3.0 for Ptolemy’s non-diatonic
genera,

One may wonder whether Ptolemy’s tetrachords are theoretical
innovations or whether they faithfully reflect the music practice of second
century Alexandria. The divisions of Didymos and Eratosthenes, authors
who lived between the time of Aristoxenos and Ptolemy, resemble
Aristoxenos’s, and there are strong reasons to assume that Aristoxenos is
a trustworthy authority on the music of his period (chapter 3). The lyra
and kithara scales he reports as being in use by contemporary musicians
would seem to indicate that the unequally divided pyknon was a musical
reality (chapter 6). Ptolemy’s enharmonic does seem to be a speculative
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§-0. Neo-Aristaxenian classification. a+ b+ c= 500
cents. This classification is based on the size of the
largest or characteristic interval (CI); the equal
division of the pyknon (a+b) is anly illustrative and
other divisions exist. The hyperenbarmomic geners
bave CLs between the major third and the fourth and
pykmotic intervals of commatic size, The enbarmonic
genera contain CLs approximating major thirds, The
chromatic genera range from the soft chromatic to
the soft diatonic of Aristoxenos or the intense
chromatic of of Prolensy. The diatonic are all those
generawithout pykna, i.c., whose largest interval s
lessthan 250 cents.

HYPERENHARMONIC
dro<a+b <3017
23+23+454 10 37.5+37.5+425 cents
Bo/79-79/78-13/10 to 50/49.49/48.32/25
ENHARMONIC
317<a+bscy
37-5+37.5+425 to 62.5+062.5+375 cents
48/47:47/46-23/18 to 30/29-20/28-56/45
CHROMATIC
d3<a+hsc
62.5+62.5+375 #0 125+125+250 cents
29/28.28/27-36/29 1 15/14-14/13+52/45

DIATONIC
c<a+h<ac
125+125+250 0 167+167+167 cents
104/97+97/90-15/13 10 11/10- 11/10- 400/363

construct as the enharmonic genus was extinct by the third century Bce
(Winnington-Ingram 1932). His equable diatonic, however, resembles
modern Islamic scales and certain Greek orthodox liturgical tetrachords
(chapter 3).

These historical studies are important not only for what they reveal
about ancient musical thought but also because they are precedents for
organizing groups of tetrachords into structurally related sets. The use of
constant or contrasting pyknotic/apyknotic proportions can be musically
significant. Modulation of genus (uetafole xata yevoo) from diatonic to
chromatic or enharmonic and back was a significant stylistic feature of
ancient music according to the theorists. Several illustrations of this tech-
nique are found among the surviving fragments of Greek music (Win-

nington-Ingram 1936).

Neo-Aristoxenian classification

The large number of new tetrachordal divisions generated by the methods
of chapter 4 indicates a need for new classification tools. A conveniently
simple scheme is the neo-Aristoxenian classification which assumes a tem-
pered fourth of 500 cents and categorizes tetrachords into four classes
according to the sizes of their CIs. For tetrachords in just intonation, the
fourth has 498.045 cents, and the boundaries between categories will be
slightly adjusted. The essential feature of this scheme is the geometrical
approach of chapter three.

Those new genera whose CIs fall between a major third and perfect
fourth may be denoted hyperenbarmonic after Ervin Wilson (personal
communication) who first applied it to the 56/55 - 55/54 - 9/7 genus. The
hyperenharmonic Cls range from roughly 450 cents down to 425 cents.
The next class is the enharmonic with Cls ranging from 425 to 375 cents,
a span of 5o cents. The widest division is the chromatic, from 375 cents to
250 cents as it includes CIs whose widths vary from the neutral thirds of
approximately 360-350 cents (16/13, 11/9, 27/22) through the minor and
subminor thirds (6/5, 7/6) to the “half-augmented seconds” (15/13, 52/45)
near 2 50 cents. Beyond this limit, a pyknon no longer exists and the genera
are diatonic,

This neo-Aristoxenian classification is summarized in 5-9. The limits of
the categories are illustrated with representative tetrachords in just
intonation,
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These four main classes may be further subdivided according to the
proportions of the two intervals which divide the pyknon, or apyknon in the
case of the diatonic genera. Because of the large number of possible divi-
sions, it is clearer and easier to display the various subgenera graphically
than to try to name them individually. Thus a number of representative
tetrachords from the Main Catalog have been plotted in §-10-12 to illus-
trate the most important types.

s-x0. Plot of characteristic intervals versus In 5-10, the first interval, as defined by the position of the note parkypate,

parbypatai. The four notes of the illustrative meson has been plotted against the characteristic interval. For most of the his-
tetrachord in ascending order of pitch are hypate, torical tetrachords of chapters 2 and 3, this is equivalent to plotting the
parkypate, lichanos, and mese. The Cl is the interval smallest versus the largest intervals or the first against the third. The
between lichanos and mese. exceptions, of course, are Archytas’s enharmonic and diatonic and Didy-

mos’s chromatic.

5-11 shows the position of the third note, lichanos, graphed against the
second, parhypate. This is equivalent to comparing the size of the whole
pyknon (or apyknon) to its first interval. This particular display recalls the
Greek classification by the position of the lichanoi and the differentiation
into shades or chroai by the position of the parhypatai.

The first interval is plotted against the second in 5-x2. In this graph,
however, all of the permutations of this set of typical tetrachords are also
plotted. This type of plot reveals the inequality of intervallic size between

5-1X. Plot of lichanoi versus parbypatai.

§-12, First interval plotsed against second intervals
of major tetrachordal genera. The tetrachords plotted
here are 50 + 50 + 400, 100 + 100 + 300, 100 +I§0

+2§0, 100 +200 +200,and 166.67 + 166.67 +

166.67 cents in all of their intervallic permutations. genera and distinguishes between permutations when the tetrachords are
The permeutations of the soft diatonic genus delineate not in the standard Greek ascending order of smallest, medium, and
the region of Rothenberg-proper diatonic scales. large.
5-10. 5-I1. 5-12.
400 - 400 4 400 ENHARMONIC
HYPERENHARMONIC DIATONIC INTENSE CHROMATIC
1 ENHARMONIC 1 d SQFT DIATONIC
. ; INTENSE DIATONIC
(%) EQUAL DIATONIC
1 CHROMATIC [o
E CHROMATIC
. 5 2
o 5 ENHARMONIC o
@
DIATONIC HYPERENHARMONIC « o o
N — T 1 — T T )
100 200 100 200 200 400
PARHYPATE PARHYPATE FIRST INTERVAL
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5-13. Intervallic inequality functions on just and
tempered tetrachords.

RATIOS

CL/MIN CI/MID MID/MIN
HYPERENHARMONIC

§6/55 - 55/54 - 9/7 13.95 I13.70 1.0I8
ENHARMONIC
28/27.36/35 - 5/4 7.021 66,136 I.291
32/31+31/30+ 5/4 7.028 6.805 1.033
46/45-24/23-5/4 1015 5243 1.936
CHROMATIC
20/19 - 19/18 - 6/5 3.554 3.372 1.054
28/27 - 15/14 - 6/5 5.013 2642 1.897
26/15-25/24-16/13 5,204 5.0B6 1.041
19/38-19/18 . 16/13 7.994 3.840 2.081
14/23-23/22-11/9  4.715 4.514 1.044
34/33 - 18/17-11/9  6.722 3.511 191§
16/15 - 15/14 - 7/6 2.389 2.234 1.069
22/21- 12/11 + 7/6 3.314 1772 1870
DIATONIC
14/13 - 13/12 - 8/7 1.802 1.668 1.080
2120 10/9 - 8/7 2737 1267 2159
28/27.9/8 - 8/7 3.672 LI33 3.239
16/15 - 10/9 - /8 1.825 1118 1.633
2§6/243-9/8.9/8  2.260 I1.000 2.260
12/11-11/10.10/9  1.2I1 1.IO§ I.09§
TEMPERED TETRACHORDS
50 + 50 + 400 8,00 8.00 1.00
66.67 + 133.33 + 300 4.50 2.2§ 2,00
100 + 100 + 300 3.00 3.00 I1.00
100 + I50 + 250 2.50 L.67 1.50
100 + 200 + 200 2,00 1.00 2,00
166.67 + 166.67 + 166,67 1.00 I1.00 I1.00

Intervallic inequality functions
More quantitative measures of intervallic inequality are seen in 5-13. The
first measure is the ratio of the logarithms of the largest interval to that of
the smallest. In practice, cents or logarithms to any base may be used. This
ratio measures the extremes of intervallic inequality. The second measure
is the ratio of the largest to the middle-sized interval. For tetrachords with
reduplicated intervals, i.e., 256/243 - 9/8 - 9/8 or 16/15 - 16/15 - 75/64, the
middle-sized interval is the reduplicated one, and this function is equal to
one of the other two functions. The third measure is the ratio of the mid-
dle-sized interval to the smallest. This function often indicates the relative
sizes of the two intervals of the pyknon and distinguishes subgenera with
the same CI.

These functions measure the degree of inequality of the three intervals
and may be defined for tetrachords in equal temperament as well as in just
intonation. All of these functions are invariant under permmtation of

intervallic order.

Harmonic complexity functions

In addition to being classified by intervallic size, tetrachords may also be
characterized by their harmonic properties. Although harmony in the sense
of chords and chordal sequences is discussed in detail in chapter 7, it is
appropriate in this chapter to discuss the harmonic properties of the tet-
rachordal intervals in terms of the prime numbers which define them.

The simplest harmonic function which may be defined on a tetrachord
or over a set of tetrachords is the largest prime function. The value of this
function is that of the largest prime number greater than 2 in the numer-
ators or denominators of three ratios defining the tetrachord. The tetra-
chord (or any other set of intervals) is said to have an #-limit or be an n-limit
construct when # is the largest prime number in the defining ratio(s),
irrespective of its exponent and the exponent’s sign.

One limitation of the n-limit function is that it uses only a small part of
the information in the tetrachordal intervals. As a result, numerous genera
with different melodic properties have the same #-limit. However, this
one-dimensional descriptor is often used by composers of music in just
intonation (David Doty, personal communication). For example, the fol-
lowing diverse set of tetrachords all contain § as their largest prime number:
25/24 - 128/125 - §/4, 256/243 - 81/80 - §/4, 16/15 . 25/24 - 6/5,256/243 -
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§-14. Harmonic complexity and simplicity func-
tions on tetrachords in just intonation. (1) CI com~
plexity: the sum of the prime factors of the largest
interval. (2) Pyknotic complexity: the joint cornplex-
ity of the two intervals of the pyknon. (3) Average
complexity: the arithmetic mean of the Cl and pyk-
notic complexities. (¢) Total complexity: the joint
complexity of the entire tetrachord. (5) Harmonic
stmplicity: I over the sum of the prime factors greater
than 2 of the ratio defining the CI. It bas been nor-
malized by dividing by 0.2, as the maximum value of
the unscaled function is 0. 2, corvesponding to 5/4
whose Wilson's complexity is 5.

RATIOS 1 2 3 4 5
HYPERENHARMONIC
56/55-55/54-9/7 13 32 22.5 32 .3846
ENHARMONIC

28/27-36/35-5/4 § 21 13 21 1.000
32/31-31/30-5/4 § 39 22 3§ 1.000
46/45-24/23-5/4 5 34 19.5 34 1.000
CHROMATIC
20/19.-19/18.6/5 8 30 19 30 .6250
28/27-15/14-6/5 8 21 14.5 21 .6250
26/25-25/24-16/13 13 26 19.5 26 .3846
39/38-10/18.16/13 13 38 25.5 38 .3846
24/23.23/22-11/9 17 37 27 40 .2041
34/33-18/17-11/9 17 34 25.5 34 .2041
16/15-15/14.7/6 10 15 1I12.§ 15 .5000
22/21.12/11-7/6 10 21 I5.§ 2I .5000
DIATONIC
14/13-13/12.8/7 7 23 15 23 .7143
21/20-10/9-8/% 7 18 12.5 18 .7143
28/27-9/8-8/% 7 16 115 I6 .7143
16/15-10/9-9/8 6 11 B85 11 .8333
256/243-9/8.9/8 6 15 105 15 .8333
I

12/11-11/10+10/9 I1 I0 1§ 22 .4545

135/128 - 6/5, 16/15 - 75/64 - 16/15, 10/9 - 10/9 - 27/25, and 16/15 - 9/8
10/9. Similarly, all the Pythagorean tunings in the Catalog are at the
3-limit.

The second limitation of the largest prime number function when
applied to the whole tetrachord is that it does does not distinguish between
intervals which may be of differing harmonic importance to the composer.
Primary distinctions between genera are determined by the sizes of their
characteristic intervals. Genera with similarly sized CIs may have quite
different musical effects due to the different degrees of consonance of these
intervals. Similar effects are seen with the pyknotic intervals as well, par-
ticularly those due to the first interval which combines with mese or the
added note, hyperhypate, to form an interval characteristic of the oldest
Greek styles (Winnington-Ingram 1936 and chapter 6). In these cases, the
largest prime function must be applied to the individual intervals and not
just to the tetrachord as a whole.

For these reasons, other indices of harmonic complexity have been
developed which utilize more of the information latent in the tetrachordal
intervals. These indices have been computed on a representative set of
tetrachords and their component intervals. The first of the indices is
Wilson’s complexity funcdon which for single intervals may be defined as the
sum of their prime factors (greater than 2) times the absolute values of their
exponents. For example, the complexities of 3/2 and 4/3 are both 3 and
those of 6/5 and 5/3 are both 8 (3 + 5). Similarly, the intervals 9/7 and
14/9 both have complexities of 13 (3 + 3 + 7). The complexities of the Cls
of some important genera are tabulated in §-14.

Wilson’s complexity function may also be applied to sets of intervals by
finding the modified least common multiple of the prime factors (with all
the exponents made positive). The pyknon of Archytas’s enharmonic con-
sists of the intervals 28/27 and 36/35. The first ratio may be expressed as
7 + 3% and the second as 32 + § + 7. The modified least common multiple of
this setis 33 . 5 - 7and the Wilson’s complexity is 21 (3 + 3+ 3 + 5+ 7). The
average complexity, which is the arithmetic mean of the complexities of the
CI and the pyknon, and the total complexity, which is the joint complexity
of all three intervals, are also shown in 5-14. In most cases the latter index
equals the pyknotic complexity.

An alternative index which may be more convenient in some cases is the
harmonic simplicity, which is the reciprocal of the complexity. This function
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§-15. Euclidean distances between genera in fust
intomation. The upper set of numbers is the distance
calculated on the largest versus the smallest intervals
of the tetrachords. The lower set is computed from the
first and second intervals. The Euclidean distance is
the square root of the sum of the squares of the
differences berween corvesponding intervals, Values

art i cents,

§-16. Euclidean distances between tempered genera,
The 1:2 chromatic is the “strong” form cor-
responding to the intense chromatic of Aristoxenas,
The equal diatonic is 166,67 + 166,67 + 166.67
cents.

may be normalized, as it is in 5-14, by dividing its values by 5, which is the
maximum simplicity of a CI or tetrachord (because 5/4 is the simplest
interval smaller than 4/3).

Euclidean distances between tetrachords

The methods described in chapter 4 and in the compilations of the historical
authors provide many tetrachords with diverse melodic characteristics. To
bring some order to these resources, some measure of the perceptual dis-
tance between different genera or between different permutations of the
same genus is desirable. While a useful measure of the distance between
genera may be obtained from the differences between the characteristic
intervals, this measure does not distinguish between the subgenera (i.e., the
r:1 and 1:2 divisions of the pyknon). A more precise measure is afforded by
the Euclidean distances between genera on a plot of the CI versus the

28/27-15/14+6/5 25/24-16/15.6/5 22/21-12/11-7/6  16/15-9/8 .10/9 12/11-11/10- 10/9
28/27-36/35 - 5/4 72.09 73.99 123.59 192.96 227.94
70.67 63.43 103.37 162.62 145.59
28/27-15/14 . 6/5 771 51.84 121.91 159.50
10.91 35.81 97.54 98.81
25/24+16/15 . 6/5 49.76 119.04 155.39
40.14 100.9X 96.09
22/21 - 12/11 - 7/6 70.26 109.77
61.73 71.56
16/15+9/8 - 10/9 44.45
§5.02
I:2 CHROMATIC INTENSE CHROMATIC SOFT DIATONIC INTENSE DIATONIC EQUAL DIATONIC
ENHARMONIC 101.36 111.80 158.11 206.16 160.8
(50 + 50 + 400) 84.89 70.71 111.80 158,11 164.9‘;
(I;z CHROMATIC 33.33 60.09 105.41 166.67
7+ 133 + 300) 47.14 37.27 74.54 105.41
INTENSE CHROMATIC 50.0 100.0 149.07
(100 + 100 + 300) 50.0 100.0 94.28
SOFT DIATONIC o
(100 + 150 + 250) go.g 123-7-’:
INTENSE DIATONIC ;
(100 +200 + 200) 7454
74-54
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§-17. Buclidean distances berween permutations of
Avehytas’s enharmonic genus. The function tab-
ulated is the distance calculated on the plot of the first
by the second interval of the tetrachord. The other
distance function, computed from the graph of the
grentest Versus the least interval, is always zero
berween permutations of the same genus.

5-18. Euclidean distances between permutations of
tempered genera.

28/27 . 5/4 - 36/35

36/35 - 5/4 - 28727

smallest interval or of the first versus the second interval.

The distances are calculated according to the Pythagorean relation: the
distance is defined as the square root of the sum of the squares of the dif-
ferences of the coordinates. The Euclidean distance is V[(CI, ~ CIL)? + (par-
hypate; —paryhypate,)?}inthe firstcase and V[(firstinterval, - first interval) )2
+ (second intervaly _ second interval,)?] in the second. It is convenient to
convert the ratios into cents for these calculations. The distances between
some representative tetrachords in just intonation are tabulated in 5-15 and
some in equal temperament with similar melodic contours in §-16.

One may also use the second Euclidean distance function to distinguish
between permutations of tetrachords as shown in §-17 and 5-18.

36/35-28/27.5/4  §/4-28/27.36/35 5/4-36/35-28/27

337.84
14.19

28/27 - 36/35 - 5/4 337-54
28/27+ 5/4 - 36/35
36/35 - 5/4 - 28/27
36/35 - 28/27 - 5/4

5/4-28/27-36/35

20.07 323.66 323.35
323.66 45729 467.43
323.55 467-43 155.39

337-54 337.84
14.19

ENHARMONIC 50 +400 + 50 400 +§0 + 50
50 + 50 + 400 350.0 350.0
50+400 + 50 494.97
INTENSE CHROMATIC| 100 + 300 + I00 300 + 10O + 100
100 + 100 + 300 200.0 200.0

100 + 300 + 100 282.84
INTENSE DIATONIC 200 + 1004 200 200 + 200 + 100
100 + 200 + 200 141.42 100.0

200 + I00 + 200 100.0

SOFT DIATONIC

100 + 250 + 150

I50 + 100 + 250

150 + 250+ 100

250+ 100 + 150

250 + 150 + 100

100 + 150+ 250
100+ 250 + 150
150+ 100+ 250
150 + 250 + 100

250+ 100 + 150

100.0

70.71 111.81 158.11 150.0
158.11 50.0 212.13 180.28
150.0 100.0 111.80
180.28 141.42

50.0

§7 CLASSIFICATION, CHARACTERIZATION, AND ANALYSIS OF TETRACHORDS




Minkowskian distances between tetrachords

The closely related Minkowski metric or city block distance function is shown
in 5-19 and 5-20 for the same sets of tetrachords. The two functions shown
here are defined as the sum of the absolute values of the differences between
corresponding intervals. For the upper set of numbers, the function is (1 CI,
— CI; | + | parhypate, ~ paryhypate; | ) and for the lower set, (! first interval, ~
firstinterval | + i second interval, ~second interval, | ). These computations
have also been done in cents throughout for ease of comparison.

5-19. Minkowski or “city block” distances berween The distances between permutations may also be compared by means
genera in just intonation. of the second distance function (5-21 and §-22).

28/27 . 15/14-6/5  25/24-16/15.6/5 22/21-12/11-7/6 16/15-9/8.10/9 12/11-11/10-10/9

28/27 -
28/27 .
25/24+
22/21 -

16/15 -

36/35 - 5/4
15/14 - 6/5
16/15 - 6/5
12/11 - 7/6

9/8. 10/9

84.86 92.57 I§51.21 245.36 305.78
70.67 70.67 119.44 203.91 203.91
7.71 66.35 160.50 220.91

I5.42 48.77 133.24 133.24

58.64 152.79 213.20

48.77 133.24 133.24

94.16 109.77

84.47 84.47

77.81

60.41

§=20. Minkowski or “city block” distances between tempered genera.

I:2 CHROMATIC INTENSE CHROMATIC SGFT DIATONIC INTENSE DIATONIC EQUAL DIATONIC

ENHARMONIC 116.67 150.0 200.0 250.0 350.0
(50 + 50 + 400) 100.0 100.0 150.0 200.0 233.33
1:2 CHROMATIC 33.33 83.33 133.33 233.33
(67 + 133 + 300) 66.67 50.0 100.0 200.0
INTENSE CHROMATIC 50.0 100.0 200.0
(100 + 100 + 300) 50.0 100.0 133.33
SOFT DIATONIC 50.0 150,
(100 + 150 + 250) 50.0 83.33
INTENSE DIATONIC 100.0
(100 + 200 + 200) 100.0
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§-21. Minkowski or “city block” distances between permutations of
Archytas’s enbarmonic genus.

2B/27 - 5/4 - 36735

36/355/428/27  36/35.28/27-5/4  5/4-28/27.36/35 s5/4-36/35 28/27

28/27-36/35 - 5/4
28/27 - 15/14 - 6/5
25/24 - 16/15 - 6/5
22/21 - 12/11 - 7/6
16/15-9/8 - 10/9

337.54

351.73 28.38 337.54 323.35
14.19 337.54 646.71 660.90
323.35 660.90 675.00

337:54 351.73

14.19

5-22. Minkowski or “city block” distances berween
permutations of tempered genera.

ENHARMONIC 50 +400 + §0 400 + 50 + §0
50 + 50 + 400 350.0 350.0
100 + 250 + 150 700.0

INTENSE CHROMATIC

100 + 300 + 100

300 + 100 + 100

100 + 100 + 300

100 + 300 + 100

INTENSE DIATONIC

200.0

200+ 100+ 200

200.0
400.0

200 +200+ 100

I00 + 200 + 200

200+ 100 + 200

SOFT DIATONIC

200.0

100 + 250 + I50

I100.0

I100.0

I50 + 100+ 2350 I50 +250 + I0O 250+ 100+150 250 + 150 + I0O

100 + 150 + 250
100 + 250 + 150
150 + 100 + 250
150 + 250 + 100
250+ 100 + 150

I00.0

100.0 150.0 200.0 150.0
200.0 50.0 300.0 250.0
150.0 100.0 150.0

250.0 200.0

§0.0
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§-~23. Tenmey pitch and barmonic distance funcions

on the intervals of tetrachords in just intonation.

56/55 -
28/27.
32/31
46/45 -
20/19 -
28/29.
26/25 -
39/38-
24/23 -
34/33-
16/15 -
12/21-
14/13 -
21/20-
28/27.

16/15 -

55/54 -
36/35 -
- 31730+
24/23 «
19/18 -
15/14 -
25/24 -
19/18 .
23/22..
18/17.
15/14 -
12/11-

13/12 .

9/7
5/4
5/4
5/4
6/5
6/5
16/13
16/13
11/
11/9
7/6
9/6

8/7

10/9- 8/7

9/8-8/7

10/9 - 9/8

256/243 - 9/8 . 9/8

12/11 + 11/10 « 10/9

SMALL
0078
3-489
0122
3.100
0138
2.997
.0096
3.156
0223
2.580
0158
2.878

0170
2.813
0113
3.I71
0185
2,742
.0I30
3.050
.0280
2.380
0202
2.664

0322
2.260

.0212
2.623

1.580
2.879

.0280
2.380
.0226
4794

0378
2.121

Tenney’s pitch and harmonic distance functions

The composer James Tenney has developed two functions to compare
intervals (Tenney 1984), and has used these functions in composition,
particularly in Changes: Sixty-four Studies for Six Harps. The first function
is the pitch-distance function defined as the base-2 logarithm of 4/b where
4 and b are the numerator and denominator respectively of the interval in
an extended just intonation. This function is equivalent to Ellis’s cents
which are 1200 times the base-2 logarithm. The second function is his
barmonic distance, defined as the logarithm of 4 . b. This distance function
is a special use of the Minkowski metric in a tonal space where the units
along each of the axes are the logarithms of prime numbers. Thus the pitch
distance of the interval 9/7 is log (9/7) and the harmonic distance is 2 - log
() + log (7).

These functions may be used to characterize tetrachords by computing
distances for each of the three intervals. This has been done for the set of
representative tetrachords in §-23. The upper set of numbers is the pitch
distances; the lower, the harmonic distances. Alternatively, one could also
apply it to the notes of the tetrachord after fixing the tonic and calculating
the notes from the successive intervals.

By a slight extension of the definition, the pitch distance function may
also be applied to tempered intervals. The pitch distance is the tempered
interval expressed as a logarithm. For intervals expressed in cents, the
formula is pitch distance = cents / 1200 log (2); other logarithmic measures
could be used. This function will be most interesting for intervals which
are close approximations to those in just intonation. The harmonic dis-
tance function is not well defined for tempered intervals unless they closely
approximate just intervals,

The Tenney functions also may be used to measure the distance between
tetrachords. The pitch distance between the Cls of two genera is the log-
arithm of the quotient of their ratios; i.., the pitch distance between 5/4,
the CI of the enharmonic, and 6/3, the CI of the intense chromatic, is the
logarithm of 25/24. The harmonic distance is the logarithm of 3/2, the
product of §/4 and 6/5.

The pitch distance and harmonic distance functions on the Cls dis-
tinguish genera quite well, though obviously not permutations of the gen-
era. The Tenney distance functions between representative set of
tetrachords in just intonation are shown in 5-24. One could also apply the
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Tenney distance functions on the pyknotic intervals to distinguish sub-
genera with the same CL

The distances between tetrachords in equal temperament may also be
measured by the Tenney functions. The pitch distance of the ClIs is sitply
the difference in cents or tempered degrees. The harmonic distance is the
sum of the ClIs. Data on representative tempered tetrachords are shown
in §-25.

§5-24. Tenney pitch and harmonic distances between genera in just intonation.

28/27 . 15/14.6/5  2§/24-16/15-6/5 22/21-12/11-7/6 16/15-9/8.10/9 12/11.11/10-10/9
18/27.36/35 - 5/4 .0177 0177 0270 0458 0512
1761 1761 1638 .1481 1427
28/27 - 15/14 - 6/5 0.0 .0I22 0280 0334
1584 1461 1303 1249
2§/24 - 16/15 - 6/5 .0122 0280 0334
1461 1303 1249
22/21 - 12/11 - 7/6 0158 0212
1181 121
16/15 - 9/8 - 10/9 .0054
0969

5-25. Tenney pitch and barmonic distances between tempered genera.

I:2 CHROMATIC INTENSE CHROMATIC SOFT DIATONIC INTENSE DIATONIC EQUAL DIATONIC
ENHARMONIC 100.0 100.0 150.0 200.0 233.33
50 + 50 + 400 700.0 700.0 650.0 600.0 566.67
I:2 CHROMATIC 0.0 50.0 100.0 133.33
67 + £33 + 300 600.0 550.0 500.0 466.67
INTENSE CHROMATIC 50.0 100.0 133.33
100 + 100 + 300 550.0 500.0 466.67
SOFT DIATONIC 50.0 83.33
100 + 150 + 250 450.0 416.67
INTENSE DIATONIC 33.33
I00 + 200 + 200 366.67
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5-27. Barlow’s specific harmonicity function on
tetrachords and tetrachordal scales. The specific
barmonicity function is the square of the number of
tones in the scale divided by sum of the reciprocals of
the barmonicities of the combinatorial intervals
(Barlow 1987) without regard to sign. For the
tetrachord, the number of tones is 4, n® = 16, and
there are six combinatorial intervals (see 5-28). The
specific harmonicity of the Dorian mode is defined as
above save that n = § (including the octave), n* = 64,
andithereare 28 intervals (- (n-1)/2).

RATIOS TETRACHORD
L. 56/55:55/54-9/7 .1063
2. 28/27-.36/35-5/4 .1859
3. 32/31:31/30-5/4 0724
4. 46/45-24/23-5/4 0885
5. 20/19-19/18.6/5 .1042
6. 28/27-15/14.6/5 1911
7.  26/25.25/24-16/13 .1062
8. 39/38.19/18.16/13 .0719
9. 24/23.23/22.11/9 0767
10. 34/33:18/17.11/9 .0848
11, 16/15-15/14 - 7/6 .2170
12. 22/21-12/11.7/6 1375
13. 14/13-13/12.8/7 1247
14. 21/20-10/9-8/7 1739
15. 28/27-9/8-8/7 2101
16. 16/15.10/9-9/8 2658
17. 256/243-9/8.9/8 2212
18. 12/11-11/10.10/9 .1609
19. 11/10-11/10:400/363 .0829
z0. 16/15-25/24-6/5 2374

DORIAN

0973

1633
.0660

08135
.0946
1721
0908
0677
.0698
.0807
.1879
1274

1143
1627

.1885
.2363
202§
-1437
0797
2133

factor of 2 - E(hcf), where hcf is the highest common factor, must be sub-
tracted from the denominator of the formula.

Barlow’s harmonicity function is applied to set of tetrachords in just
intonation in 5-26. The harmonicities of the three intervals are computed
separately. The harmonicity of 4/3 is the constant —0.2143. The har-
monicities of the pykna are also included to complete the characterization
of the tetrachords.

In the case of the general tetrachord 4 - b . ¢, where ¢ = 4/34b, there are four
ratios, 1/1,4,4 - b, and 4/3. The n - (n - 1)/2 = 6 combinatorial intervals are
a, ab, 4/3, b, 4/3a, and 4/3ab. For example, Archytas’s enharmonic, 28/27 -
36/35 - 5/4, yields the tones 1/1, 28/27, 16/15, and 4/3. The combinatorial
intervals are 28/27, 16/15, 4/3, 36/35, 9/7, and 5/4 the six non-redundant
differences between the four tones of the tetrachord. The definition of
these intervals for equally tempered tetrachords is shown as the Polansky
set in §-48. In just intonation, the sums and differences become products
and quotients and the zero and 500 cents are replaced by 1/1 and 4/3
respectively.

For scales and other sets of ratios, Barlow defined a third function,
termed specific harmonicity. The specific harmonicity of a set of ratios is the
square of the number of tones divided by the sum of the absolute values of
the reciprocals of the harmonicities of the combinatorial intervals (Barlow
1987). For the tetrachord, # = 4 and #? = 16. The specific harmonicities are
presented in 5-27~29 for various sets of tetrachords.

Similarly, the specific harmonicities of scales generated from tetrachords
may be computed. In the case of heptatonic scales, there are eight tones
including the octave (2/1) and 28 combinatorial relations, which are defined
analogously to the six of the tetrachord. The specific harmonicities of the
same set of tetrachords as in §-26 are given in 5-27. The specific har-
monicities of both the tetrachords and a representative heptatonic scale are
included in this table. :

The Dorian mode was selected for simplicity, but other scales could have
been used as well (see chapter 6 for a detailed discussion of scale construction
from tetrachords). It is the scale composed of an ascending tetrachord, a
¢9/8 tone, and an identical tetrachord which completes the octave. Abstractly,
the tones are 1/1 @ ab 4/3 3/2 3a/2 3ab/2 2/1, where a - b - 4/3ab is the gener-
alized tetrachord in just intonation. The set of combinatorial intervals is 4,
ab, 413, 3/2, 3a/2, 3ab/2, 2/1, b, 4/34, 3/24, 3/2, 36/2, 2/a, 4/34b, 3/24b, 3/25,
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§-28. Barlow’s specific barmonicity function on the

perenutations of Ptolemy's intense diatonic genus.

S

RATIOS TETRACHORD DORIAN

16/15+9/8 - 10/9
16/15 - 10/9 - 9/8
0/8 . 10/9 - 16/15
9/8 . 16/15 - 10/9
10/9 -+ 16/15 - 9/8
10/9-9/8 - 16/15

2794 2567
.2658 2363
.2658 253§
2586 .2407
.2586 2398
2794 .2486

3/2, 2/ab, 9/8, 9a/8, 9ab/8, 3/2, a4, ab, 4/3, b, 4/34, 4/34b. The repeated
intervals are a consequence of the modular structure of tetrachordal scales.

As can be seen from §-27, the specific harmonicity function distinguishes
different tetrachords and their derived scales quite well. 5-28 shows the
results of an attempt to use this function to distinguish permutations of
tetrachords from each other. Although the specific harmonicity function
does not differentiate between intervallic retrogrades (¢ - & - c versusc- b - 4)
of single tetrachords, it is quite effective when applied to the corresponding
heptatonic scales.

Finally, since the specific harmonicity function is basically a theoretical
measure of consonance, it would be interesting to use it to determine the
most consonant tunings or shades (chroai) of the various genera. Accord-
ingly, a number of tetrachords whose intervals had relatively “digestible”
prime factors were examined. The results are tabulated in §-29. It is clear
that while the diatonic genera are generally more consonant than chro-
matic and they in turn are more harmonious than the enharmonic, there is
considerable overlap between genera and permutations.

In particular, the most consonant chromatic genera are more consonant
than many of the diatonic tunings.

5-29. Themast consonant genera according to Barlow’s specific barmonicity function.

IA.
IB.
24,
2B,
3A.
3B.

IA.
IB.

34.
3B.

RATIOS TETRACHORD  DORIAN
ENHARMONIC
256/243 - 81/80-5/4 .1878 1669
5/4-81/80+256/243 .1878 1715
28/27.36/35-5/44  .1859 1633
5/4-36/35 - 28/27 .1859 1667
25/24 - 128/125 - 5/4  .1806 1550
5/4-128/12525/24 .1806 1556
CHROMATIC
16/15-25/24 - 6/5 2374 L2133
6/5-25/24 16/15 .2374 2145
16/15 - 75/64 - 16/15 2317 2008
10/9-81/80-32/27  .2200 .2046
32/27-81/80.10/9  .2200 2035
25/24+27/25 - 32/27  .1926 1745

6A. 9/8-64/63-7/69 2137 1937

68, 7/6-64/63-9/8 2137 1903
7A. 10/9-36/35 - 7/6 .2032 1783
78. 7/6-36/35-10/9 .2032 1797
DIATONIC
1A 9/8.28/27.8/7 2176 2027
1B, 8/7.28/27.9/8 2176 1914
24, 10/9:21/20-8/7 .2104 .1888
28, 8/7.21/20-10/9 .2104 1856
3. 16/15-9/8 - 10/9 .2794 2567
38 10/9.9/8.16/15 2794 2486
44, 256/243-9/8-9/8 2212 .202§
48. 9/8.9/8-256/243 2212 210§
5. 10/9-27/25-10/9 2251 1993
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5-30. Euler’s gradus suavitatis function on tetra-
chords in just intonation. (1) is 4 byperenbarmonic
gentis, (2)—(4) are enbarmonic, (5)~(12) and (20)
are chromatic, and (13)—(19) are diatonic. The tet-
rachords are in their standard form with the small
intervals at the base and the largest interval at the
tap. See 5-3 2 and 5-33 for other permutations of the
tetrachord.

Euler’s gradus suavitatis function

A function somewhat similar to Wilson’s, Tenney’s, and Barlow’s functions
is Euler's gradus suavitatis (GS) or degree of harmoniousness, consonance,
or pleasantness (Euler 1739 [1960}; Helmholtz [1877] 1954). Like the other
functions, the GS is defined on the prime factors of ratios, scales, or chords.

Unlike Barlow’s functions, the GS is very easy to compute. The GS of
a prime number or of the ratio of a prime number relative to 1 is the prime
number itself, i.e., the GS of 3/1 is 3. The GS of a composite number is the
sum of the GSs of the prime factors minus one less than the number of
factors. The GS of a ratio is found by first converting it to a section of the
harmonic series and then computing the least common multiple of the
terms. The GS of the least common multiple is the GS of the ratio.

Sets of ratios such as chords and scales may be converted to sections of
the harmonic series by multiplying each element by the lowest common
denominator, For example, the harmonic series form of the major triad

RATIOS INTERVAL A INTERVALB CI PYKNON

I.  §6/55-55/54-9/7 24 22 11 15 (28/27)
2. 28/27.36/35-5/4 15 17 7 11 (16/15)
3. 32/31-31/30- 5/4 36 38 7 11 (16/15)
4. 46/45-24/23 - §/4 32 28 7 11 (16/15)
5. 20/19-19/18 -6/ 25 24 8 10 (10/9)
6. 28/27-15/14.6/5 I5 I4 8 1o (10/9)
7. 26/25.25/24 . 16/13 22 14 17 17 (13/12)
8. 309/38-19/18.16/13 34 24 17 17 (13/12)
9. 24/23-23/22-11/9 28 34 1§ 15 (12/11)
10. 34/33-18/17-11/9 30 22 1§ 15 (12/1)
I1. 16/15-15/14-7/6 11 14 10 10 (8/7)
12. 22/21-12/11 - 7/6 20 15 10 10 (8/7)
13. 14/13-13/12.8/7 20 17 10 10 (7/6)
14. 21/20-10/9-8/7 I§ 10 10 10 (7/6)
15, 28/27.9/8.8/7 15 8 10 10 (7/6)
16. 16/15.10/9:9/8 1 §¢ 10 8 12 (32/27)
17. 256/243-9/8.9/8 19 8 8 12 (32/27)
18, 12/11.11/10-10/9 15 16 1o 8 (6/5)

I9. I1/10-11/10:400/363 16 16 35 31 {121/100)
20. 16/15.25/24-6/5 1 14 8 10 {10/9)
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5-31. Euler’s gradus suavitatis function on tetra-
chords and tetrachordal scales. (1) is a byper-
enbarmonic genus, (2)~(g) are enbarmontc, (5)-

(12) and (20) are chromatic, and (13)-(19) are dia-

tonic. The barmonic series representation of the
Dorian mode of 16/15 - 9/8 - 10/9 is 30:32:36:40:
45:48:54:60. Its least common multiple is 4320 and

its GSis 16,

RATIOS TETRACHORD
1. 56/55-55/54-9/7 30
2, 18/27.36/355/4 21
3. 32/31.31730.5/4 42
4. 46/45-24/23-5/4 35
5. 20/19.19/18.6/5 29
6. 28/27.15/14-6/5 19
7. 26/25.25/24-16/13 27
8. 39/38-19/18.16/13 39
9. 24/23.23/22-11/9 40
1o. 34/33.18/17.11/9 33
11. 16/15-15/14-7/6 17
12. 22/21-12/11-7/6 22
13. 14/13-13/12-8/7 24
14. 21/20.10/9.8/7 19
15. 28/27.9/8.8/7 16
16. 16/15.10/9-9/8 16
17. 256/243 -9/8-9/8 19
18, 12/11-11/10-10/9 21
I9. I11/10.I11/10:400/363 35
20. 16/15-25/24+6/5 17

DORIAN

33
24
45
38
32
22
30
42
43
36
20
25
27
23
19
I9
22
4
38

20

5-32. Buler's gradus suavitatis function on the
permutations of Ptolemy’s intense diatonic genus.
(1) is the prime form. (2) is the order given by

Didymas.

1/1 §/4 3/2 is 4:5:6. The least common multiple of this series is 60 and the
GS of the major scale thus is 9.

The GSs of the component intervals of the usual set of tetrachords are
shown in g-30. The GS of 1/1 is 1 and that of 4/3 is 5. In 5-31, the GSs
of both the tetrachords and the Dorian mode generated from each tetra-
chord are tabulated. The GSs of the Dorian mode are 3 more than the GSs
of the corresponding tetrachords, reflecting the structure of the mode
which has the identical series of intervals repeated at the perfect fifth.

The GS seems not to be particularly useful for distinguishing per-
mutations of tetrachords, as evidenced by 5-32. It is noteworthy that the
most harmonious arrangements of Ptolemy’s intense diatonic are those
which generate the major and natural minor modes (see the section on
tritriadic scales in chapter 7).

As with Barlow’s functions, the GS ranks the enharmonic the least har-
monious of the major genera, though the most consonant tunings and
arrangement overlap with those of the chromatic (5-33). Similarly, the most
harmonious chromatic tunings approach those of the diatonic.

Interestingly, however, the most harmonious enharmonic tuning is
28/27 - §/4 - 36/35 and its retrograde which have the largest interval medi-
ally. The same is true for the chromatic 16/15 - 6/5 - 25/24. Of the diatonic
forms, the two arrangements of Ptolemy’s intense diatonic with the ¢/8
medial are the most consonant.

Although the GS is an interesting and potentially useful function, it does
have one weakness. Because the ratios defining small deviatons from
ideally consonant intervals contain either large primes or large composites,
the GS of slightly mistuned consonances can become arbitrarily large.
Thus the GS would predict slightly mistuned consonances to be extremely
dissonant, a prediction not consistent with observation.

RATIOS TETRACHORD DORIAN
1. 16/15.9/8.10/9 13 16
2. 16/15-10/9-9/8 16 19
3. 9/8.10/9-16/15 16 19
4. 9/8.16/15-10/9 16 19
5. I0/9.16/15.9/8 16 19
6. 10/9-9/8.16/15 13 16
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RATIOS TETRACHORD DORIAN This failure, however, is a feature shared by the other simple theories of

ENHARMONIC consonance based upon the prime factorization of intervals. Helmholtz’s

14, 2,; f/ 243 '651/ 80/’ 5/4 23 26 beat theory (Helmholtz [1877] 1954) and the semi-empirical “critical band”

z:- : 8/2; ‘ ;/43 53.653‘; i I 24 theories of Plomp and Levelt (1965) and Kameoka and Kuriyagawa (1969a,
. . . 22 . . . . . .

26 36035 - 2827 5/a 2? oy 1969b) avoid predicting infinite dissonance for mistuned consonances, but

3o 25/24- 1287125 - 5/4 22 2 are more complex and difficult to use. The prime factor theories are ade-

quate for theoretical work and for choosing between ideally tuned musical

CHROMATIC
1A, 16/15:25/24- 6/5 17 20 structures.
1B. 25/24-16/15:6/5 18 21 ..
1c. 16/15-6/5 25024 6 19 Statistical measures on tetrachordal space
2. 16/15-75/64-16/15 17 20 The concepts of the degree of intervallic inequality and of the perceptual
34 10/981/B0- 32/27 18 21 differences between tetrachords may be clarified by computing some of the
38. 32/27-81/80- 10/9 18 21

standard statistical measures on a set of representative tetrachords. The
4A.  25/24-27/25 - 32727 20 23

4B, 32/27.27/25-25/24 20 123 arithmetic mean of the three intervals is 500/3 or 166.667 cents in equal

temperament or >Y(4/3) in just intonation. The mean deviation, standard

§A.  I6/15-15/14-7/6 17 20
5B, 16/15-7/6-15/14 19 22 deviation, and variance are calculated according to the usual formulae for
6a.  ©/8-64/63-7/6 19 22 entire populations with # = 3. These data are shown in §-34 for some rep-
68. 64/63-9/8-7/6 17 20 resentative tetrachords in just intonation and in 5-3 5 for a corresponding set
74 10/9-36735 - 7/6 18 e in equal temperament. While not distinguishi ions, these fun
o 716 - 36135 . . q mperament. e not distinguishing permutations, these func-
7R 10797 3513 ? tions differentiate between genera quite well, although the degree to which
7¢.  36/35-10/9 - 7/6 20 23 . . ) .
the mathematical differences correlate with the perceptual is not known.
DIATONIC The geometric mean, harmonic mean, and root mean square {or quad-
1a. 9/8.28/27.8/7 18 21 €8 mean, . T ) q q :
8. 8/7-9/8.18/27 16 19 ratic mean) may be calculated in a similar fashion. Like the other statistical
4. 10/9-21/20-8/7 18 21 measures above, these are non-linear functions of the relative sizes of the
2B. 21/20-10/9-8/7 19 22 intervals and they have considerable ability to discriminate between the
34 16/15-9/8-10/9 13 16 various genera. The relevant data are shown in 5-36 and 5-37.
38. 10/9-9/8.16/15 13 16 Several properties of these functions are apparent: for a given degree of
44 256/243-9/89/8 o2 intervallic asymmetry, the root mean square will show the greatest value,
5. I10/9-27/25-10/9 17 20

5-33. The most consonant genera according to Euler’s gradus suavitatis function. These
ratios are the most consonant permutations of the most consonant tunings of each of the gen-
era. In cases where the most consonant permutation according to Barlow's functions is differ-
ent from the one(s) according to Euler’s, both are given. The gradus suavitatis of a set of
ratios is the GS of their least common multiple after the set bas been transformed into a bar-
™MONic series.
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§-34. Mean deviations, standard deviations, and
varignces of the intervals of tetracbords in just into-
nation. The arithmetic mean bas the constant value
166.67 cents (500/3) for all genera. In just intona-
tion its value isthe cube root of 4/3. The standard
deviation and variance are computed with n=3.

§-35. Mean deviations, standard deviations, and
variances of the intervals of tempered tetrachords.

§-36. Geomterric mean, harmonic mean, and root
mean square of the intervals of tetrachords in just
intonation, For n = 3, the geometric mean is the cube
root of a-b-(500 —a —b); the barmonicmean is 3/
(1/1), where 1/i=1/3, 1/b, and 1/(500 —a—1); the
root mean square is N(E(12)/3), where i2 = a2, b2,
(so0-a—b)2.

5-37. Geometric mean, barmonic mean, and root
mean sguare of tempered tetrachords.

MEAN DEV. STANDARD DEV. VARIANCE
28/27.36/35 - 5/4 146.87 155.88 24299.31
28/27- 15/14 - 6/5 99.75 108.20 11725.73
25/24 - 16/15 - 6/5 99.75 107.12 11474.97
22/21-12/11-7/6 67.24 76.84 5904.95
16/15 - 9/8 - 10/9 36.19 39.38 1550.44
12/11 - 11/10 - 10/9 10.93 12.99 168.70
MEAN DEV. STANDARD DEV. VARIANCE
ENHARMONIC 155.56 164.99 27222.22
(50 + 50 + 400)
1:2 CHROMATIC 88.89 98.13 9629.62
(67 + 133 + 300)
INTENSE CHROMATIC 88.8¢ 94.28 8888.8¢
(100 + 100 + 300)
SOFT DIATONIC 55.56 62.36 3888.89
(100 + 150 + 250)
INTENSE DIATONIC 44.44 47.14 2222.22
(100 + 200 + 200)
EQUAL DIATONIC 0.0 0.0 0.0
GEOMETRIC ~ HARMONIC RMS
28/27. 36135+ 5/4 105.86 76.97 227.73
28/27 . 15/14 - 6/5 133.40 109.40 198.21
25/24 - 16/15 - 6/5 135.58 I14.21 197.58
22/21 - 12/11 - 7/6 147.90 131.57 182.94
16/15-9/8 - 10/9 160.77 155.15 170.62
12/11 . 11/10 10/9 165.51 165.01 166.52
GEOMETRIC ~ HARMONIC RMS
ENHARMONIC 100.0 70.59 234.52
(50+ 50 + 400)
I:2 CHROMATIC 138.79 116.38 193.41
(67 + 133 + 300)
INTENSE CHROMATIC 144.23 128.57 191.41
(100 + 100 + 300)
SOFT DIATONIC 155.36 145.16 177.95
(100 + 150 +250)
INTENSE DIATONIC 158.74 150.0 173.21
(100 + 200 + 200)
EQUAL DIATONIC 166.67 166.67 166.67
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§-38. The third interval function, seen frontally and
obliguely. The three intervals are parbypate to
hypate, lichanos to parhypate, and mese to lichanos.
They always sum 500 cents (3/2 injust intonation).

the geometric the next, and the harmonic the least, except for the arith-
metic mean, which is insensitive to this parameter.

The set of all possible tetrachords instead of just representative examples
or selected pairs may be studied by computing these standard statistical
measures over the whole of tetrachordal space. This space may be defined
by magnitudes of the first and second intervals (parhypate to hypate and
lichanos to parhypate) as the third interval (mese to lichanos) is completely
determined by the values of the first two.

This idea may be made clearer by plotting a simple linear function such
as the third tetrachordal interval itself versus the first and second intervals.
The third interval may be defined as 500 ~ x — y, where x is the lowest
interval and y the second lowest. The domain of this function is defined by
the inequalities 0 < x < 500 cents, 0 <y £ 500 cents, and x + ¥ < 500 cents.
5-38 depicts the “third interval function” from two angles. Its values range
from o to 500 cents.

The arithmetic, geometric, harmonic, and root mean square functions
are shown in 5-39 through 5-41. The arithmetic mean is a plane of constant
height at 166.667 cents for all values of the thre¢ intervals. The geometric
and harmonic means have dome and arch shapes respectively, while the
root mean square somewhat resembles the roof of a pagoda. The shapes of
these latter means may be clearer in the contour plots in the lower portions
of the figures.

One may conclude that the arithmetic mean obscures the apparent dis-
tance between genera, the geometric mean reveals it, the harmonic mean
maximizes it, and the root mean square exaggerates it. This conclusion is
illustrated in 5-43 where a cross-section through the plot is made where the
second interval has the value 166.667 cents and the first interval varies from

THIRD INTERVAL THIRD INTERVAL

FIRST INTERVAL

SECOND INTERVAL

SECOND INTERVAL PFIRST INTERVAL
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5-39. Arithmeticmean of the three tetrachordal
intervals. The arithmeticmean bas the constant
value of 166.67 cents. The domain of this function is
thexandy axes (0 <x< §00), (0 <y < 500), andthe
liney = 500 —x, where x andy are the first and
second intervals of the tetrachord. The third interval
may also approach zero,

ARITHMETIC MEAN

FIRST INTERVAL SECOND INTERVAL

5-40. Geometric mean of the three tetrachordal
fntervals,

GEOMETRIC MEAN

I l
/,4',"

"um,
mm”

FIRST INTERVAL

b

rMJ

.ul‘

Jin

SECOND INTERVAL

500

SECOND INTERVAL

FIRST INTERVAL

0t0 333.333 cents, The means are all equal when all three intervals of the
tetrachord are 166.667 cents.

The analogous representation is applied to the mean deviation, standard
deviation, and variance, which are shown in §5-44-46. The variance has
been divided by 100 so that it may be plotted on the same scale as the other
statistical functions.

These functions have a minimum value of zero when all three intervals
of the tetrachord are 166.667 cents each. This is seen most clearly in the
cross-section plot of 5-47.

Based on its properties with respect to the four means and three sta-
tistical measures, the equally tempered division of the fourth appears to be
a most interesting genus. It is the point where the three means are equal and
where the statistical functions have their minima.

5-42. Root mean square of the three terra-
chordal intervalks.

5-41. Harmonic mean of the three tetrachordal
intervals.

ROOT MEAN SQUARE

HARMONIC MEAN

ST
7, >
IO

FIRST INTERVAL SECOND INTERVAL FIRST INTERVAL SECOND INTERVAL
500 500
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o 500 o 500
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5~43. Cross-sections of the various means of the
three tetrrachordal intervals when the second

interval equals 166.67 cents.
300 -
RMS
ARITHMETIC
] GEOMETRIC
HARMONIC
400

FIRST INTERVAL

§-44. Mean deviation of the three tetrachordal

intervals.

MEAN DEVIATION

FIRST INTERVAL

2

o 500
FIRST INTERVAL

SECOND INTERVAL

500

SECOND INTERVAL

§~477. Cross-section of the mean deviation, standard
deviation, and variance of the three tetrachordal
intervals when the second interval equals 166.67

cents.
200 VARIANCE/I00
STAND. DEV.
J MEAN DEV.
(o] 300

FIRST INTERVAL

5-45. Standard deviations of the three retra- §-46. Variance of the three tetrachordal

chordal intervals. intervals.,
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5-48. Interval sets of the abstract tetrachord, 0 a
a+b soo. Injust intonation the abstract tetrachord
maybewritten 1/1 3 a-b g/3 010 a a+b 498 cents,
and the intervals adjusted accordingly.

SUCCESSIVE INTERVALS

a a+h 500
b s00~4-b
POLANSKY SET
a a+h 500
a+h 500
b 500 -4
500—a~b

DIFFERENCE SET

a a+h 500

b 500—a~b
b~a 500—a~2b
500 — 3k

Polansky’s morphological metrics

A more sophisticated approach with potentially greater power to dis-
criminate between musical structures has been taken by Larry Polansky
(1987b). While designed to handle larger and more abstract sets of ele-
ments than tetrachords, i.e., the type of scale and scale-like aggregates
discussed in chapters 6 and 7, and even sets of timbral, temporal, or
rhythmic information, Polansky’s morphological metrics may be applied to
smaller formations as well.

Morphological metrics are distance functions computed on the notes or
intervals between the notes of an ordered musical structure. A morpho-
logical metric is termed linear or combinatorial according to the number
of elements or intervals used in the computations: the more intervals or
elements used in the computation, the more combinatorial the metric. In
other words, combinatorial metrics tend to take into account more of the
relationships between component parts. A strictly linear interval set as well
as two of the possible combinatorial interval sets derived from an abstract,
generalized tetrachord are shown in 5-48. For a strictly linear interval set
of a morphology (or scale) of length L, there are L — 1 intervals. The maxi-
mum combinatorial length for a morphology of length L is the binomial
coefficient (L2—L)/ 2, notated as L,,. ‘

The simplest of Polansky’s metrics is the ordered linear absolute mag-
nitude (OLAM) metric which is the average of the absolute value of dif-
ferences between corresponding members of two tetrachords. In the case
of two tetrachords spanning perfect fourths of 500 cents, this function re-
duces to the sum of the absolute values of the differences between the two
parhypatai and the two lichanoi divided by four. Given two tetrachords 4;
+b1+500~a;—by and a3 +b2+ 500—42-b), the equation is:

L

pX | er;_ey I /1L,

in2
where L = 4 and e;= (0, 41, 41 + b1, 500) cents and (o, 42, 42 + b2, 500) cents.
When not divided by L, this metric is identical to the Minkowski or “city
block” metric previously discussed. Note that the OLAM metric does not
take intervals into account, so it looks at L rather than L — 1 values.

A simpler formula, ( |a2_a1 | and |4+ 5, - a1 —b;| )/ 2, would be de-
fensible in this context as zero and 500 cents are constant for all tetrachords
of this type. If the tetrachords are built above different tonics or their
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fourths spanned different magnitudes, i.e., 500 and 498 or 583, etc., the
first equation must be used.

The next simplest applicable metric is the ordered linear intervallic
magnitude (OLIM) metric which is the average of the absolute values of the
difference between the three intervals which define the tetrachords. In the
case of the two tetrachords above, the intervals are 21,5;, §00—4; ~b;and a3,
by, 500-a3~k; The equation for this metric functon is:

L
5-49. Ordered linear absolute magnitude (upper) I .E( | e1,—e5;_; |- lea~ez;_; N /(L-1), L—1 =3,
and ordered linear intervallic magnitude (lower) i=2
metrics on tetrachords in just intonation.

where i ranges from 2 through L, since intervals are being computed.

In 5-40, these two simple metrics are applied to a group of representative
tetrachords in just intonation. The melodically similar tempered cases are
§-50. Ordered linear absolute magnitude (upper) shown in §-50. Permutations of genera are analyzed in 5-5x and 5-52. The
and ordered linear intervallic magnitude (lower) OLAM metric distinguishes between these genera quite well; the OLIM

metrics on tempered genera. less so, but patterns are suggested which data on a larger set of tetrachords

28/27-15/14-6/5  25/24-16/15-6/5  22/21-12/11.7/6 16/15-9/8.10/9  12/11-11/10-10/9

28/27 . 36/35 - 5/4 17.67 19.60 34.2§ 63.17 72.90

47.11 47.11 79.63 135.94 135.04

28/27 - 15/14 - 6/5 1.93 16.59 45.50 55.23
5.14 32.51 88.83 88.83

25/24 - 16/15 - 6/5 14.66 43.57 53.30
32.51 88.83 88.83

22/21 - 12/11 - 7/6 28.092 38.64
56,31 56.31

16/15-9/8 - 10/9 973

25.94

1:2 CHROMATIC INTENSE CHROMATIC SOFT DIATONIC INTENSE DIATONIC ~ EQUAL DIATONIC

ENHARMONIC 20.17 37.50 50.0 62.50 87.50

(50 + 50 + 400) 66.67 66.67 100.0 133.33 155.56

1:2 CHROMATIC 8.33 20.83 33.33 58.33

(67 + 133 + 300) 22.22 3333 66.67 88.89
INTENSE CHROMATIC 8.333 25.0 50.0

(100 + 100 + 300) 33.33 66.67 88.80

SOFT DIATONIC 12.50 37.50

(100 + 150+ 250) 33.33 55.56
INTENSE DIATONIC 25.0

(xo0 + 200 + 200) 44.44
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§-51. Ordered linear absolute magnitude (upper) and ordered linear intervallic magnitude
(fower) metrics on Avchytas’s enbarmonic genus.

§/4-28/27-36/35  5/4-36/35-28/27

2827 5/4-36/35 3635 5/4-28/27  36/35-28/27-5/4
28/27 36735 5/4 84.39 84.39 3.55 165.22 161.68
225.03 225.03 9.46 225.03 215,57
28/27 < 5/4 - 36/35 7.10 87.93 80.83 84.38
9.46 225.03 215.57 225.03
36/35 - §/4 - 28/27 80.83 87.93 84.39
215.57 225.03 225.03
36/35-28/27 . 5/4 225.03 165.22
225.03 225.03
5/4.28/27 . 36/35 3.55
9.46

§5-52. Ordered linear absobute magnitude (upper) and ordered linear intervallic magnitude

(fower) metrics on permuted tempered tetrachords.

ENHARMONIC 50 + 400 + 50 400 + 50+ 50
50 + 50 + 400 87.50 175.0
2333 233.3
50+ 400 + §0 87.50
233.3
INTENSE CHROMATIC | 10O + 300 + I00 300 + 100 + 100
100 + I00 + 300 50.0 100.0
1333 133.3
100 + 300 + 100 50.0
133.3
INTENSE DIATONIC | 200 + IO0 + 200 200 + 200 + 100
100 + 200 + 200 25.0 50.0
66.67 66.67
200 + 100 + 200 25.0
66.67
SOFT DIATONIC I00 + 250 + I50 I50 + 100 + 250 I50+ 250 + I00 250 + 100 + 150 250 + I§0 + 100
100 + 150 + 250 25.0 12.50 50.0 62.50 75.0
66.67 33-33 100.0 100.0 100.0
100 + 250 + 150 37.50 25.0 37.50 50.0
100.0 33.33 100.0 100.0
150 + 100 + 250 37.50 50.0 62.50
100.0 66.67 100.0
150 +250+ 100 37.50 25.0
100.0 66.67
250 + 100 + I50 12.50
33-33
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5-53. Ordered combinatorial intervallic magnitude
metric on the Polansky (upper) and difference (Jower)
interval sets from tetrachords in just intonation.

28/27 - 15/14 - 6/5

may reveal. In particular, the OLIM metric fails to distinguish between
permutations of tempered tetrachords,

In theory, morphological metrics on combinatorial interval sets have
greater discriminatory power than metrics on linear sets. Two sets of
combinatorial intervals were derived from the simple successive intervals
of 5-48. The first set, the Polansky set, is that described by Polansky
(1987b). The second set, the difference set, was constructed from iterated
differences of differences (Polansky, personal correspondence).

The ordered combinatorial intervallic magnitude (OCIM) metric is the
average of the absolute value of the differences between corresponding

elements of the musical structure. Its definition is:
L1 L

z =z 1A €110~ Aeis €24 ) [/ L,
jul f=

where L,; = the number of intervals in the set (the binomial coefficient,
described above). To apply it to other combinatorial interval sets, it must
be appropriately modified to something like:

L
E =) |/ Loy
jm2

where I; are the elements of a set like the difference set of 5-48.

As can be seen in §-53 and §-54, the OCIM metric calculated on the two
sets of intervals from these tetrachords discriminates between genera very
well. Both sets of intervals are roughly equivalent with this metric.

Permutations are studied in 5-55 and §-56. On neither interval set does
the OCIM metric distinguish permutations completely.

15/24 - 16/15 . 6/5  22/21.12/11.9/6 16/15-9/8-10/9  12/11:11/10:10/9

28/27 -
28/27 -
25/24 -
22/21 -

16/15 -

36/35 - 5/4
15/14 - 6/5
16/15 - 6/5
12/11 - 7/6

9/8 - 10/9

35.34
94.23

16.62
86.52

3.86
10.28

62.65 1710.08 116.57
141.68 223.11 184.20
27.31 74.75 81.23
47.45 128.88 104.01
26.03 15.36 79-94
55.16 136.59 106.58
4743 53.92

B1.43 61.10

19.45

51.87
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§-54. Ordered combinatorial intervallic magnitude metric on the Polansky (upper) and
difference (lower) interval sets frome tempered tetrachords.

1:2 CHROMATIC INTENSE CHROMATIC  SOFT DIATONIC INTENSE DIATONIC  EQUAL DIATONIC

ENHARMONIC 52.78 58.33 83.33 108.33 136.11
(50 + 50 + 400) 116.67 83.33 150.0 216.67 104.44
1:2 CHROMATIC 16.67 30.56 55.56 83.33
(67 + 133 + 300) 44.44 38.80 100.0 100.0

INTENSE CHROMATIC 25.0 50.0 77.78
(100 + 100 + 300) 66.67 136.33 ITIII
SOFT DIATONIC 25.0 52.78
(100 + 150 + 250) 66.67 6I.11
INTENSE DIATONIC 38.30
(100 + 200 + 200) 55.56

5-55. Ordered combinatorial intervallic magnitude metric on Polansky (upper) and
difference (lower) interval sets on permutations of Avehytas’s enbarmonic genus.

28/27 . 5/4.36/35  36/35.5/4-28/27  36/35.28/27-5/4  s5/4-28/27.36/35  5/4.36/35-28/27
28/27 . 36735 - 5/4 168.77 168.77 7.10 222.66 215.57
450.06 450.06 18.92 229.76 216.57
28/27 - 5/4 - 36/35 9.46 17114 161.68 168.77
946 43587 431.14 450.06
36735 5/4 - 28/27 161.68 171.14 168.77
43114 43587 450.06
36/35 - 28/27 . 5/4 225.03 222.66
225.03 220.76
§/4+28/27.36/35 7.10
18.92

76 CHAPTER §




5-56. Ordered combinatorial intervallic magnitude metric on the Polansky (upper) and
difference (lower) interval sets from permuted tempered tetrachords.

ENHARMONIC 50 + 400 + §0 400 + §0 + §0
50+ 50 + 400 175.0 233.33
466.67 233.33
50 + 400 + §0 175.0
466.67
INTENSE CHROMATIC | 100 + 300 + 100 300 + 100 + 100
100 + 100 + 300 100.0 133.33
266.67 133.33
00 + 300 + 100 100.0
266.67
INTENSE DIATONIC 200 + 100 + 200 200 + 200 + 100
100 + 200 + 200 §0.0 66.67
133.33 66.67
200 + 100 + 200 50.0
133.33
SOFT DIATONIC 100+ 250 + 150 150 + 100 + 2§0 150 + 250 + 100 250+ 100 + 150 250+ 150 + 100
100 + 150 + 250 50.0 25.0 83.33 91.67 100.0
133.33 66.67 150.0 116,67 100.0
100 + 250 + 150 75.0 33.33 75.0 83.33
200.0 33.33 200.0 150.0
150 + 100 + 250 75.0 66.67 01.67
200.0 66.67 116.67
150 + 250 + I00 75.0 50.0
200.0 133.33
250 + 100 + 1§0 25.0
66.67
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Unordered counterparts of the ordered metrics are also defined. Al-
though the unordered linear absolute or intervallic magnitude metrics are
of little use in this context, the unordered combinatorial intervallic mag-
nitude (UCIM) metric is rather interesting when computed on these two
interval sets.

For the Polansky interval set, the metric is:

I-1 L4 L1114
|Z %A (es;e1,)/ Lim-Z TA(e2i, €24)/ Ly |, L= 6.
jul ini =1 iml

This function is the absolute value of the difference between the aver-
ages of the corresponding intervals. For the difference set, the formula

becomes:
L L
| £ (1)/ L= (1) / Lm |, L=6,
in2 =2

where the I; are the elements of the set.

5-57 and §-58 show the data for the same group of tetrachords as before.
Genera are fairly well discriminated by this metric, especially when cal-
culated on the Polansky interval set, but not as well with the difference set
intervals. Neither are particularly successful for distinguishing per-
mutations with this metric (5-59 and 5-60).

5§~57. Unordered combinatorial intervallic magnitude metric on the Polansky (upper) and
difference (lower) interval sets from tetrachords in just intonation.

28/27-15/14-6/5  25/24-1

8/15.6/5 22/21.12/11-7/6 16/15.9/8.10/9  12/11-11/10- 10/9

28/27+36/35 - 5/4
28/27 . 15/14 - 6/5
25/24 - 16/15 - 6/5
22/21 - 12/11 - 7/6

16/15-9/8 - 10/

11.78 10.49
47.11 4454
1.29
2.57

16.98 25.86 19.37
73.77 119.68 106.71
5.20 14.08 7.59
26.65 72.57 59.60
6.48 15.36 8.88
29.23 7514 62.17
8.88 2.39

45-91 32.94

6.48

12.97

78 CHAPTER §

%v
R ————



5-58. Unordered combinatorial intervallic magnitude metric on the Polansky (upper) and
difference (lower) interval sets from tempered tetracherds.

1:2 CHROMATIC INTENSE CHROMATIC SOFT DIATONIC INTENSE DIATONIC ~ EQUAL DIATONIC

ENHARMONIC 13.88¢ 8.333 16.67 25.0 19.44
50+ §0 + 400 61.11 50.0 83.33 116.67 116.67
I:2 CHROMATIC 5.556 2.778 II.11 5.556
67+ 133 + 300 1111 22.22 55.56 55.56
INTENSE CHROMATIC 8.333 16.67 II.II
100 + 100 + 300 33.33 66.67 66.67
SOFT DIATONIC 8.333 2.778
I0C + 1§50+ 250 33-33 33:33
INTENSE DIATONIC 5.556
100 + 200 + 200 0.0

5-59. Unordered combinatorial intervallic magnitude metric on Polansky (upper) and
difference (lower) interval sets on permutations of Archytas’s enharmonic genus.

28/27-5/4-3635  36/35.5/4-28/27  36/35-28/27-5/4 5/4.28/27.36/35 5/4-36/35-28/27

28/27.36/35 - 5/4
28/27.5/4 - 36/35
36/35 - 5/4 - 28/27
36/35-28/27 5/4

574+ 28/27 - 36/35

56.26 56.26

225.03 220.30
0.0

4.73
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2.36 2.36 0.0
473 117.24 107.78
53.89 53.89 56.26
220.30 107.78 117.24
53.89 53.89 56.26
215.57 103.05 112.51
0.0 222,66
112.51 103.0§
2.36
9.46
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§-60. Unordered combinatorial intervallic magnitude merric on vhe Polansky (upper)
and difference (Jower) interval sets from permuted vempered tetrachords.

ENHARMONIC 5O + 400 + 50 400 + 50 + §0
50+ 50 + 400 58.33 0.0
233.33 116.67
50 + 400 + 50 §8.33
116.67
INTENSE CHROMATIC | IOO + 300 + 100 300 + I00 + 100
I00 + I00 + 300 33.33 0.0
133.33 66.67
100 + 300 + 100 33.33
66.67
INTENSE DIATONIC 200 + 100 + 200 200 + 200 + 100
100 + 200 + 200 16.67 0.0
33-33 33-33
200 + 100 + 200 16.67
66.67
SOFT DIATONIC I00 + 250 + 150 I50 +100 + 250 150+ 250 + 100 250+ 100 + I50 250 + 1§50 + 100
100+ I50 + 250 16.67 8.333 16.67 8.333 0.0
66.67 16.67 83.33 16.67 50.0
I00 + 250 + 150 25.0 0.0 25.0 16.67
83.33 16.67 50.0 16.67
150 + 100 + 250 25.0 0.0 8.333
100.0 33.33 66.67
150+ 250+ I0O 25.0 16.67
66.67 33.33
250+ 100 + 150 8.333
33:33
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In addition to absolute and intervallic metrics, directional metrics are
also defined. Directional metrics measure only the contours of musical
structures, i.e., whether the differences between successive elements are
positive, negative or zero. Although these metrics are perhaps the most
interesting of all, they are generally inapplicable to tetrachords because
tetrachords are sets of four monotonically increasing pitches whose dif-

§~61. Ordered (upper) and unordered (lower) ferences are always positive (or negative if the tetrachord is presented in
f;;bmm”ﬂ}mm”l d";“:"‘mf"m o descending order). Directional metrics, however, are very applicable to

ifference sets from tetrachords n just intonation. .
7 melodies constructed from the notes of tetrachords or from tetrachordally

derived scales such as those of chapter 6.

The intervals of the tetrachordal difference set, however, are not
necessarily monotonic and therefore combinatorial directional metrics
may be computed on these intervals. Two such metrics were calculated

5~62. Ordered (upper) and unordered (lower)
combinatorial interval direction metrics on
difference sets from tempered genera. for the same set of tetrachords and permutations used above, the ordered

28727 15/14:6/5  25/24.16/15-6/5  22/2112/11.7/6 16/15-9/8.10/9 12/11 - 11/10 - 10O/9
28/27-36/35 - 5/4 1667 1667 1667 .5000 .1667
-3333 -3333 +3333 -3333 3333
28/27 - 15/14 - 6/5 0.0 0.0 .3333 0.0
0.0 0.0 .6667 0.0
2§/24 - 16/15 . 6/5 0.0 3333 0.0
0.0 6667 0.0
22/21 - 12/11 . 7/6 -3333 0.0
667 0.0
16/15 - 9/8 - 10/9 .5000
-3333
1:2 CHROMATIC INTENSE CHROMATIC  SOFT DIATONIC INTENSE DIATONIC ~ EQUAL DIATONIC
ENHARMONIC 1667 0.0 .1667 5000 3313
(50 + 50 + 400) 3333 0.0 3333 -3333 6667
I:2 CHROMATIC 1667 0.0 3333 .5000
(67 + 133 + 300) 3333 0.0 6667 1.00
INTENSE CHROMATIC I667 5000 3333
(100 + 100 + 300) 3333 3313 6667
SOFT DIATONIC 3333 .5000
(100 + 150 + 250) 6667 1.00
INTENSE DIATONIC .3333
(100 + 200 + 200) 3333

81 CLASSIFICATION, CHARACTERIZATION, AND ANALYSIS QF TETRACHORDS




combinatorial intervallic directional (OCID) metric and its unordered
counterpart, the unordered combinatorial intervallic directional (UCID)
metric. The OCID metric is the average of the differences of the signs
of corresponding intervals. The sign (sgn) of an interval is -1, o, or +1
according to whether the interval is decreasing, constant or increasing.
The difference (diff) is 1 when the signs are dissimilar, otherwise the
difference is zero. The definition of the OCID metric on the difference

set is:
L
X diff(sgn (11, 5g0(13))/ L Ln=6.

The UCID metric is the average of the absolute values of the numbers of
intervals with each sign. The definition of UCID on the difference set is:

L

T | #er— e l)/L,,,,L,,,= 6,

2
where #e,” = the number of intervals in the matrix such thatv = sgn (I,;); i.e,,
v=[-1,0, 1]

The data from these computations are shown in §-61 and §-62. Similar
results were obtained with tetrachordal permutations (5-63 and 5-64).

§5-63. Ordered (upper) and unordered (lower) combinatorial interval direction metrics on
difference sets from permutations of Archytas’s enbarmonic genus.

28/27 . 5/4+ 36/35

36/35+5/4-28/27  36/35-2827-5/4  §/4-28/27-36/35  §/4-36/35 28027

28/27 - 36/35 - 5/4
28/27 - 5/4 - 36735
36/35 - 5/4+ 18/27
36/35 - 28/27 - 5/4

§/4+28/27 - 36/35

5000
-3333

.5000 1667 1667 0.0
-3333 -3333 -3333 0.0
0.0 +3333 -3333 :§000
0.0 .6667 0.0 3333
-3333 +3333 .§000
6667 c.0 3333
3333 1667
6667 13333
1667
°3333
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§-64. Ordered (upper) and unordered (lower) combinatorial interval direction metrics on
difference sets from permuted tempered tetrachords,

ENHARMONIC

50 + 400 + 50

400 + §0 + 50

§0 + 5O + 400

5§50+ 400 + 50

INTENSE CHROMATIC

.5000
6667

100 + 300 + 100

-3333
-3333

.5000
3333

300 + 100 + 100

100 + 100 + 300

100 + 300 + 100

INTENSE DIATONIC

.5000
.6667

200+ 100+ 200

*3333
-3333

.5000
-3333

200 + 200 + 100

100 + 200+ 200

200 + 100+ 200

SOFT DIATONIC

.5000
3333

100 + 250 + 150

3333
-3333

.5000
6667

I50 + 100 + 250

150 + 250 + 100

250 + 100 + 150 250 + I50 + 100

100+ 150+ 250

100 + 250 + 150

I50 + 100 + 250

I50+250+ 100

250 + 100 + 150

-3333
6667

1667 3333
3333 6667

.5000 0.0

3333 0.0
.§000
-3333
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.3333 6667
-5000 -3333
-3333 0.0
0.0 1667
0.0 3333
-5000 -3333
-3333 0.0
1667
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Rothenberg propriety

David Rothenberg has developed criteria derived from the application of
concepts from artificial intelligence to the perception of pitch (Rothenberg
1969, 1975, 1978; Chalmers 1975, 1986b). In Rothenberg’s own words
(personal communication): “These concepts relate the intervallic structure
of scales to the perceptibility of various musical relations in music using
these scales. Only the relative sizes of the intervals between scale tones, not
the precise sizes of these intervals are pertinent.” These concepts are ap-
plicable to scales of any cardinality whether or not the intervals repeat at
some interval of equivalence. In practice, most scales repeat at the octave,
though cycles of tetrachords and pentachords are found in Greek Orthodox
liturgical music (Xenakis 1971; Savas 1965).

To apply Rothenberg’s concepts, the first step is to construct a difference
matrix from the successive intervals of an n-tone scale. The columns of the
matrix are the intervals measured from each note to every other one of the
scale. The rows p of the matrix are the sets of adjacent intervals measured
from successive tones, These intervals are defined conventionally: the row
of seconds (¢;) comprises the differences between adjacent notes; the row
of thirds () consists of the differences between every other note; etc., up
to the interval of equivalence (). Row ty contains the original scale.

A number of functions may be calculated on this matrix. The most basic
of these is propriety. A scale is strictly proper if for all rows every interval in
YOW 1,1 is less than every interval in row ¢, If the largest interval in any row
tn-1 is at most equal to the smallest interval in row t,, the scale is termed
proper. These equal intervals are considered ambiguous as their perception
depends upon their context. A familiar example is the tritone (F-B in the
C major mode in 12-tone equal temperament), which may be perceived as
either a fourth or a fifth.

Scales with overlapping interval classes, i.e., those with intervals in rows
ta-1 larger than those in rows,, are improper. These contradictory intervals
tend to confound one’s perception of the scale as a musical entity, and im-
proper scales tend to be perceived as collections of principal and orna-
mental tones. Improper scales may contain ambiguous intervals as well.

5-65 illustrates these concepts with certain tetrachordal heptatonic
scales in the 12- and 24-tone equal temperaments. The first example is the
intense diatonic of Aristoxenos. The scale is proper and the tritone is am-
biguous. The second scale is Aristoxenos’s soft diatonic which is also
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5-65. Rothenberg difference matrices. The row
index is t 5. Max (tn) is the largest entry in row tn,
Min () is the smallest enry invow t,,. The intense
diatomic tetrachord is 1 +2 +2 degreesor 6+ 12+ 12
parts. The soft digtonicderivesfrom 2 +3+50r6+9
+ 1§ parts. The neutral diatonicis 3 +4 +3 degrees, a
permutation of 9 +9 + I2 parts. The intense
chromatic is 1 +1 +3 degrees. The enbarmonic
tetrachord is 1 + 1 + 8 degrees. Intervals in
parentheses are ambiguous; those in square brackets
are contradictory.

INTENSE DIATONIC IN I2—~TONE ET: PROPER
tp o 2 4 6 7 9 11 12/0

proper, but replete with ambiguous intervals. A composer using this scale
might prefer to fix the tonic with drone or restrict modulation so as to avoid
exposing the ambiguous intervals. The next scale is patterned after certain
common Islamic scales employing modally neutral intervals. It is strictly
proper, a feature it shares with the more familiar five-note black key scale
in 12-tone equal temperament.

The final two examples, Aristoxenos’s intense chromatic and his en-
harmonic, are improper. The majority of the intervals of these scales are
either ambiguous or contradictory. These scales are most likely to be heard
and used as pentatonic sets with alternate tones or inflections.

Because the major (o 400 700 cents, 4:5:6 in just intonation), minor (o
300 700 cents, 10:12:15), subminor (o 250 700 cents, 6:7:9), and supra-
major (0 450 700 cents, 14:18:21) triads are strictly proper, they can serve

INTENSE CHROMATIC IN 12-TONE ET; IMPROPER
tp o 1 2 5 7 8 9 12/0

1] I 2 2 2 I 2 2 Max(tz=mIN(4)=6 1) 1 1 [3] (2] 1t 1 [3] max(@y)>mIN ()
23 4 4 3 3 4 3 t2 [2] 4 [s]1 3 [2] 4 4 wmax@a>miN(3y)
t3 s & s s 5 5 5 tz 5 (6 (6 4 5 5 3
t+ 7 7 7 7 © 7 7 tg 7 7 7 7 (6) (6 [8]
ty;, 8 o9 9 8 8 9 9 ts 8 8 10 8 [7] 9 10
ts 10 II 10 10 10 II IO tg 9 II II 9 I0 1II II

ty I2 12 12 12 12 I2 12

SOFT DIATONIC IN 24-~TONE ET: PROPER
to o 2 § 10 14 16 19 24/0

t7 I2 12 I2 I2 I2 Iz 1I2

ENHARMONIC IN 24-TONE ET: IMPROPER
to o I 2 10 14 15 I6 24/0

o2 3 () 4 2 3 (5) Max(t)=MIN () t; 1 1 [Bl 4 1 1 [B] MAX () >MIN (D)
tz (5 8 (@ 6 (5) 8 (5) Max(tz)=mN(t3) tz 2] 9 [rz2]ls [2] 9 9 max@2)>mMN(3)
t3 10 (12)11 (9) 10 10 10 MAX (t3)=MIN (t4) t3 10 [13][13][6] 10 10 TO MAX (t3) > MIN (tg)
ty 14 14 14 14 (12) 13 (I5) MAX (t4) = MIN (t5) t¢ 14 14 14 14 [11][11] [18]

tg 16 17 (19) 16 (15) 18 (19) ETC.
tg (19) 22 21 (19) 20 22 21
t7 24 24 24 24 24 24 24

NEUTRAL DIATONIC IN 24-TONE ET: STRICTLY PROPER

to 0 3 7 10 14 17 21 24/0
1 3 4 3 4 3 4 3
2 7 7 7 7 7 7 6
t3 10 II 10 II IO IO IO
t4 14 14 14 14 13 14 I3
Ly 17 18 17 17 17 17 1%
ts§ 21 21 20 21 20 21 120
t7 24 14 24 14 14 24 24

MAX (tp-1) < MIN (2p)

ts 15 15 22 15 [rz]19 22
ts 16 23 23 16 20 23 23
t7 24 24 24 24 24 24 24
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5-66. Propriety limits of tetrachords. The
differences are in cents and an underlying zero
modulo 12 equal temperament is assumed. The
results for fist intonation are virtually identical
except that the fourth of 498.045 cents and a whole
tone 0f 203,91 cents replace the 500- and 200-~cent

intervals in the computations.

ROWS DIFFERENCE MATRIX

1y a b 500—a-k
17} a+b 500-4 s00-h

1 500 500 500

CONSTRAINTS: 0 <4 < 250; 0< b < 250; 250 < 4
+b <500,
VERTICES! O, 250; 250, 0; 250, 250.

§-67. Propriety limits for isolated tetrachords and
conjunct chains of tetrachords.

300

300

as sets of principal tones for improper scales. The various sets of principal
tones would be used as the main carriers of melodies, while the auxiliary
tones would be used as ornaments. This topic deserves more extended
discussion than is appropriate here and Rothenberg’s original papers
should be consulted (Rothenberg 1969, 1975, 1978).

The fact that the minor and septimal minor triads are strictly proper may
explain certain musically significant cadential formulae in the Dorian
modes of the enharmonic and chromatic genera. These consist of a
downward leap from the octave to the lowered submediant (trite), then
down to the subdominant (mese) before ending up on the dominant (par-
amese). This formula may be repeated a fifth lower, beginning with a leap
from the subdominant (mese) to the lowered supertonic (parhypate) and
then down to the subtonic (hyperhypate) before ending on hypate (chapters
6 and 7). Minor triads are outlined in the chromatic genus and septimal
minor triads in the enharmonic. The latter chords contain the important
interval of five dieses called eklysis by the Greek theorists, and in fact, the
jump from parhypate to hyperhypate is seen in the Orestes fragment
(Winnington-Ingram 1936). The upper submediants (lichanos and par-
anete) may be substituted in both genera; the major triad appearing in the
chromatic genus is also strictly proper.

As has been seen above, the propriety criterion separates those scales
derived from chromatic and enharmonic tetrachords from those generated
by diatonic genera, As will be seen later, the situation is somewhat more
complex; under certain conditions, some diatonic tetrachords yield only
improper scales, while some chromatic genera can combine with diatonic
tetrachords to generate proper mixed heptatonic scales.

Propriety may be computed for abstract classes of scales or subscalar
modules rather than for specific instances by replacing one or more of the
intervals by variables. If the three subintervals of the tetrachord are written
35 4, b, and 500 -4~ b (4, b, and 4b/34 in just intonation), one can calculate
the Rothenberg difference matrix and determine the propriety limits for
isolated tetrachords or conjunct chains where the interval of equivalence is
the fourth. Such chains were present in the earlier stages of classical Greek
music and are still extant in contemporary Greek Orthodox liturgical music
(chapter 6 and Xenakis 1971).

The computation is performed by solving the inequalities formed by
setting each of the elements of rows #, less than each of those in rows tyel
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In practice, the work may be minimized because only the elements in the
first (# + 1) / 2 rows of an n-tone scale need be considered. One may also

5-68. Propriety limits of pentachords. ignore relations that are tautological when all the intervals are positive.
The result is a set of constraints on the sizes of intervals # and 4, shown
ROWS DIFFERENCE MATRIX in §-66. Tetrachords and conjunct chains of tetrachords spanning perfect
&t a4 b 500-a-b 200 fourths, are strictly proper when intervals # and 4 satisfy these constraints.
t2  4+b 500-4 700-4-b 200+4 The tetrachords and chains are proper when their intervals equal the ex-
t3 500 700-4 700-b 200+4+4 trema of the constraints. For values outside these limits, the tetrachords and

t4 700 700 700 700 . . .
conjunct chains are improper.
GONSTRAINTS: 0< 8 < 250;0<b<250;250<4

+b< 500,22 +b <700, 4+ 2b < 700; -2 < Because the three intervals 4, b, and 500 ~ 4 — b add to a constant value,

200; 300 < 2a +b. there are only two degrees of freedom. Therefore, the domain over which
VERTICES: 250, 0; 50, 200 33.3, 233.3; 100, tetrachords are proper may be displayed graphically in two dimensions.
300; 233.3, 233.3; 250, 200. The region in the 2 - b plane within which tetrachords are strictly proper is

shown in 5-67. The vertices define an area in the # -  plane within which the

constraints are satisfied. Points on the edges of the triangular region cor-

§-69. Propriety limits for isolated pentachords and respond to proper tetrachords. The two points on the axes are also proper
conjunct chains of pentachords. as trichords, which are degenerate tetrachords with only three notes.

Similarly, the propriety limits for pentachords consisting of a tetrachord

and an annexed disjunctive tone (200 cents or 9/8) may be determined. The

300 difference matrix is shown in 5-68. As all circular permutations of a scale

have the same value for propriety, it is immaterial whether the disjunctive

tone is added at the top or bottom of the tetrachord. The region satisfying

the propriety constraints for isolated pentachords and pentachordal chains

is shown in §-68.
300 Similar calculations may be carried out for complete heptatonic scales

consisting of two identical tetrachords and a disjunctive tone. This tone

§-70. Propriety limits for heptatonic scales with identical tetrachords. §-71. Propriety limsits for heptatonic scales
with identical tetrachords.
300 |.
a b s00-a-bF 200 a b 500-4~b
a+b  so0-a4 700-a-b 200+a a+h 500—2  500-b i
§oo  700-4  700-b 200+4+b 500 500 500
700 700 700 700 500+4 §00+h 1000 —a-b -

CONSTRAINTS: I00<4<250;100<b<250;250<a+b< 400,

VERTICES; 100,15§0; 100, 250; 150,100; 150,250; 250,150;2§0,100. 300
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5-72. Propriety limits for tetrachords and tetra-
chordal chains. These limits are for chains of confunct
tetrachords such as are found in Greek Orthodox li-
turgical music (Xenakis 1971).

5-73. Propriety limits for pentachords and pen-
tachordal chains,

may be placed between the tetrachords or at either end to complete the
octave (chapter 6). The results of the calculations are given in §-70. The
region of propriety is shown in 5-71.

Complete tetrachordal space

An alternative mode of graphic representation may be clearer. Physical
chemists have long been accustomned to plotting phase diagrams for three
component mixtures on equilateral triangle graphs. The three altitudes are
interpreted as the fractions of each component in the whole mixture, There
are only two degrees of freedom as the sum of the composition fractions
must equal unity. The data from 5-66, 5-68, and 5-70 have been replotted
in 5-72-73.

§-72 shows the range over which the intervals 4, b, and 500 — 2 - b may
vary and still result in proper tetrachords. Pentachords are shown in §-73
and heptatonic scales in §-74.

The advantage of the triangular graph over the conventional rectangular
type is most evident with the heptatonic scales of §-74. All points in the
interior of the semi-regular hexagonal region correspond to strictly proper
scales, while the edges are sets of intervals that define scales that are merely

c=a-§
500
b a
o o
a ¢ b
500 o 500

§-74. Proper beptatonicscales.
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c=ma-b
500

500 o 500

5-75. Non-diatonic genera.

c=a-b
500

500 o 500

5-76. Complete tetrachordal space.

proper. The three triangular spaces lying between the long sides of the
hexagon and the edge of the space contain diatonic genera which yield
improper heptatonic scales. In certain cases to be discussed later, some of
these tetrachords may be combined with other genera to produce proper
mixed scales,

The six vertices of the central hexagon in §-74 are the six permutations
of the soft diatonic genus of Aristoxenos, 100 + 150 + 250 cents. The center
of overall symmetry is the equal diatonic genus, 166.667 + 166.667 +
166.667 cents. The intersection of the altitudes of the triangle and the
midpoints of the long sides of the hexagon are the three permutations of the
intense diatonic, 100 + 200 + 200 cents, while the intersections with the
midpoints of the short sides define the arrangements of the neo-
Aristoxenian genus, 125 + 12§ + 250 cents. This genus lies on the border of
the chromatic and diatonic genera, but sounds chromatic because of the
equal division of the pyknon.

The non-diatonic or pyknotic genera are portrayed in §-75. The empty
border around the filled regions delimits the commatic (25 cents) and
subcommatic intervals. The small triangular regions in dark color near the
vertices are the hyperenharmonic genera whose smallest intervals fall be-
tween 2§ and §o cents in this classification (see the neo-Aristoxenian clas-
sification above for more refined limits on the boundaries between the
hyperenharmonic, enharmonic, and chromatic genera), Next are the trap-
ezoidal enharmonic and chromatic zones which flank the unmarked central
diatonic area. The enharmonic zone contains pyknotic intervals from go to
100 cents and the chromatic from 100 to 125 cents.

These data are summarized in §-76. The diatonic tetrachords generating
proper and strictly proper scales map into the central zone. The three tri-
angular zones flanking the central region along the long sides of the hex-
agon are diatonic tetrachords which contain one of the small hyper-
enharmonic, enharmonic, or chromatic intervals. These diatonic genera
yield improper scales. As in §-75, the chromatic tetrachords lie in the large
trapezoidal regions, with the enharmonic and hyperenharmonic beyond.
The outer belts of the chromatic zones depict genera with enharmonic and
hyperenharmonic intervals. Similarly, the enharmonic regions are divided
into realms of pure enharmonic and enharmonic mixed with hyper-

enharmonic intervals.
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§5~77. Propriety limits for beptatonic scales with
mixed tetrachords. (Only the first four rows are
shoun.)

Propriety of mixed scales

The computation of the propriety limits for heptatonic scales containing
dissimilar tetrachords is a more complex problem. Since there are now four
degrees of freedom, two for each of the tetrachords, the graphical methods
used for the single tetrachord case are of limited use. It is possible, however,
to consider the upper and lower tetrachords separately and to calculate
absolute limits on the intervals of each. If 4, b, and 500 ~ 4 — b are assigned
to the intervals of the lower tetrachord and ¢, 4, and 500 — ¢ ~d to the upper,
one can compute the range of values for 4 and b over which it is possible to
find an upper tetrachord with which a proper scale can be generated. Similar
computations may be done for ¢ and 4. These results of these calculations
are tabulated in 5-77 and are graphed in 5-78 and §-79. These graphs use

oonly those relations which are solely functions of 2 and 4 or c and 4.

Triangular plots of the same data are depicted in 5-80 and 5-81. The
union of the the upper and lower tetrachord regions corresponds to the
pentachordal limits of 5-68 and 5-73, and their intersection is the proper
diatonic region of 5-74. The upper and lower tetrachord regions are also
the intervallic retrogrades of each other as propriety is unaffected by ret-
rogression or circular permutation of the intervals.

The solution to the general case of finding the limits for mixed tetra-
chordal scales must satisfy all the inequalities that relate 4, 4, ¢, and 4. It is
difficult to display this four-dimensional solution space in two dimensions.
One can, however, choose tetrachords from the lower or upper absolute

a b 500-a~b 200 ¢ d 500~¢—d

a+b  s00-2 700-a—b 200+¢ c+d 500-¢ so0-c—d+a
500 700-2 700—-a4-b+¢ 200+¢+d 500 500-¢+4 s00—¢c—d+a+b
700 700-a4+¢ 700-a-b+c+d 700 s00+4 §00-c+a4+b  1000-c-d

CONSTRAINTS ONZAND b: 0 <4 <250;250 <a+b<§00; 24 +b<700;4 + 25 <700,

VERTICES: 100, I50; 100, 300; 250, 200; 250, 6; 233.3, 233.3.

CONSTRAINTS ONCAND d: € <250; 250 <¢ +d <400; d~¢ < 200; 300 < 2¢ +4d.

VERTIGES: 50, 200; 33.3, 233.3; 100, 300; 250, 150; 250, 0.

MUTUAL CONSTRAINTS ON 4, b, ¢, ANDd: a<c+dib<c+dic<a+byd<a+bc<2a,a +c<500; b +c<500;4+d<500;b—c<200; 20— 4 <
300;4-¢<100;c+d-8<300;a+b+c<700; 20 +d—a<500;¢+2d~a<500;a+b+d<700; 28 +2b—c <700; 4 +b~c~d < 100; 300 <4
+c+dic+d<2a+b;200<28 +2b—c—d 20+ d-a-b<300; 24 ~c—d< 500,200 < 20 +b—Gc+b+d—a <500; 500 <a +b+c+d; 300 <

20+2d—a;2a +b—2c~d < 200.
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5-78. Absolute propriety limits for lower
retrachords.

W
Q
[e]
T

INTERVAL &
1

INTERVAL 4 joo

5~79. Absolute propriety limits for upper
terrachords.
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5-80. Absolute propriety limits for lower
tetrachords.

propriety regions of 5-80 and 5-81 and find companion tetrachords which
produce proper heptatonic scales when joined to them by a disjunctive
tone. These computations are performed in the same way as in §-70 and
§-77, except that the variables in one of the two tetrachords are replaced
by the cents values of the intervals. The result of the calculations will be a
range of values for the companion tetrachord.

The three permutations of the intense diatonic genus in r2-tone equal
temperament (100 + 200 + 200 cents, 200 + 100 + 200 cents, and 200 + 200
+ 100 cents) as well as the neochromatic form of the syntonic chromatic
(100 + 300 + 100 cents) were selected as lower tetrachords. The propriety
limits for the upper companion tetrachords were then computed. These
results are shown in 5-82.

Points in the interiors of the regions yield strictly proper scales, while
those on the peripheries produce scales that are merely proper. The neo-
chromatic tetrachord has only a one-dimensional solution space; the up-
permost point corresponds to a mode of the harmonic minor scale.

Similar calculations were performed for an additional z3 tetrachords and
the results are tabulated in 5-83. In agreement with previous results (5-74
and §-78), no proper scales could be formed from lower tetrachords whose
first intervals were microtones.

c=a-b
500

a ¢ b
500 [¢] 500

5-81. Absolute propriety limits for upper
tetrachords.
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§-82. Propricty ranges for upper companion tetra-
chords: limits for the tetrachords (a) 100 + 200 + 200
cents, (b) 200 + 100 + 200 cents, (¢) 200 + 200 + 100
cents, (d) 100 + 300 + 100 cents..
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Upper tetrachords may also be chosen and lower companion ranges
subsequently calculated to yield scales that are the intervallic retrogrades
or octave inversions of thase above.

A number of interesting conclusions may be drawn from these data.
Proper heptatonic tetrachordal scales containing microtones are only pos-
sible under certain conditions. The microtonal intervals may be present in
either the upper or lower tetrachord provided they are not in the extreme
positions, i.e., not intervals # or 500—-c~d.

Proper hexatonic scales also exist when tetrachordal intervals 5 or d equal
zero and 4 and ¢ are 250 cents. These scales may be analysed as containing
a tetrachord, a disjunctive tone, and a trichord.

The tetrachordal genera which appear as vertices of the propriet)'r re-
gions are of great interest. In particular, the equal division 166.667 +
166.667 + 166.667 accepts as upper companions both chromatic and im-
proper diatonic genera, including some with subcommatic intervals, Other
new tetrachords occurring as vertices are the improper diatonic genera
33.333 +233.333 + 233.333; this is very close to Al-Farabi's 49/48 - 8/7 . 8/
7, and 50 + 250 + 200, which is approximated rather well by 40/39 - 52/45 -
9/8.

Work of other investigators

Several other investigators have independently developed descriptors
functionally identical to Rothenberg’s strict propriety. Gerald Balzano has
used the notion of “coherence” in his work on microtonal analogs of the
diatonic scale in 12-tone equal temperament (Balzano 1980). Though not
tetrachordal, Balzano’s scales are homologous to the tritriadic scales dis-
cussed in chapter 7. Ervin Wilson (personal communication) has applied
the term constant structure to scales in which each instance of a given interval
subtends the same number of subintervals, but not necessarily subintervals
of the same magnitude or order. This property is also equivalent to
propriety.
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5-83, Proper mixed tetrachord scales, in cents. These I. 100200 200 50, 200} §0, 2§0; 200, 200} 200, §0
tetrachords can combine with a disjunctive tone and 2. 200 100 200 100, 150; 100, 300; 200, 200, 200, §0
any tetrachord in the region defined by the vertices to 3. 200200 100 100, 200; 100, 300; 2§0, 1§0; 2§0, §0
yield proper or strictly proper scales. The retrogrades 4. 100 300 100 100, 200; 200, 100
of these tetrachords can also serve as the upper tetra- 5. 100150250 50, 250; §0, 200; 150, 1§0; 150, 100
chords of proper scales. The third interval of each tet- 6. 100150150 100, 150; 100, 250; 200, 1§0; 200, §0
rachord may be found by subtracting the sum of the 7. 1501001250 50, 200} §0, 250; 150, 150; 150, 100
two tabulated intervals from soo cents. The neo- B. 1501250100 100, 27§; 100, 200; 150, 2§0; 225, 17§; 225, 7§
chromatic tetrachord number 4 is the upper tetra- 9. 250100150 150, 150; 150, 250; 250, 150; 250, 50
chord of the harmonic minor mode. Its region of pro- 10. 250 I50 100 150, 150; 150, 250; 250, 150; 250, §0
prietyisreduced toa line rather than an area in the I1. §0250200 NO PROPER SCALES
tetrachordal interval plane. Tetrachords 11, 12, and 12, 50200150 NO PROPER SCALES
26 cannot form proper scales with any upper 13. 200350250 100, 150; 100, 200; 150, 1§0; 150, 100
tetrachord. 14. 2001250 50 200, 150; 200, 200; 250, 150; 250, 100
I5. 25050200 150, 150; 150, 250; 200, 200; 200, 100
16. 250 200 §0 200, 150; 200, 200; 2§0, 150; 25G, 100
I7. 125125260 50, 200; §0, 250; 150, 150; 150, 100
18. 125250 12§ 87.5, 187.5; 87.5, 287.5; 212.5, 162.5; 212.5, 62.5
I9. 250 12§ 12§ 150, 150; 150, 2§0; 250, 1§0; 250, 50
20. 150150200 50, 200; §0, 250; 200, 200; 200, §0
2I. 150200 1§0 75, 1753 75, 2255 83.3, 283.3; 150, 250; 225, 175;
228, 2§
22, 200150 1§0 100, I50; 100, 300; 250, I50; 250, 0
23. 100275 12§ 87.5, 187, 5; 87.5,237.5; 200, 1253 200, 75
24. 125275 100 100, 175; 100, 250; 212.5, 137.5; 212.5, 62.§ -

25. 233.33 233.33 3333 233.33, 133-33; 233.33, 166.67

26. 33.33233.33233.33 NO PROPER SCALES

27. 166,7 166.7 166.7 66.67, 183.33; 66.67, 266.67; 88.89, 288.8¢;
133.33, 266.67; 233.33, 166.67; 233.33, 16.67
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