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Abstract

This paper discusses a compositional algorithm, important in many
of the works of James Tenney, which models a melodic principle known
as dissonant counterpoint. The technique synthesizes two apparently
disparate musical ideas—dissonant counterpoint and statistical feedback—
and has a broad range of applications to music which employs non-
deterministic (i.e. randomized) methods. First, we describe the his-
torical context of Tenney’s interest in dissonant counterpoint, noting
its connection to composer/theorist Charles Ames’ ideas of statisti-
cal feedback in computer-aided composition. Next, we describe the
algorithm in both intuitive and mathematical terms, and analyze its
behavior and limiting cases via numerical simulations and rigorous
proof. Finally, we describe specific examples and generalizations used
in Tenney’s music, and provide simple computer code for further ex-
perimentation.
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1 Tenney, Dissonant Counterpoint, and Statistical

Feedback

“Carl Ruggles has developed a process for himself in writing
melodies for polyphonic purposes which embodies a new prin-
ciple and is more purely contrapuntal than a consideration of
harmonic intervals. He finds that if the same note is repeated
in a melody before enough notes have intervened to remove the
impression of the original note, there is a sense of tautology, be-
cause the melody should have proceeded to a fresh note instead
of to a note already in the consciousness of the listener. There-
fore Ruggles writes at least seven or eight different notes in a
melody before allowing himself to repeat the same note, even in
the octave.”

Henry Cowell, [13] (pp. 41–42)

“Avoid repetition of any tone until at least six progressions have
been made.”

Charles Seeger, “Manual of Dissonant Counterpoint” [26] (p.
174)

1.1 Tenney and Dissonant Counterpoint

The music of James Tenney often invokes an asynchronous musical com-
munity of collaborators past and present. Many of his pieces are dedicated
to other composers, and poetically reimagine their ideas. In these works
Tenney sometimes expresses connections to another composer’s music via
sophisticated transformations of the dedicatee’s compositional methods. For
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example Bridge1 (1984), for two pianos, attempts to resolve the musical and
theoretical connections between two composers—Partch and Cage—both of
whom influenced Tenney [35, 33]. The resolution, or “reconciliation” [35],
in this case the marriage of Cage-influenced chance procedures and Partch-
influenced extended rational tunings, is the piece itself. The construction of
that particular bridge made possible, for Tenney, a new style with interesting
genealogies.

As a composer, performer, and teacher, Tenney took musical genealogy
seriously. He seldom published technical descriptions of his own work,2 but
he wrote several innovative theoretical essays on the work of others (see for
example [33, 32]). Some of these explications are, in retrospect, transparent
theoretical conduits to his own ideas. Many of the historical connections in
Tenney’s work (to the Seegers, Partch, Cage, Varèse, even Wolpe) appear in
or are suggested by his titles. However, Tenney’s formal transformations of
other composers’ ideas are less well understood. The few cases in which he
wrote about his own pieces (for example, see [34]) demonstrate the amount
of compositional planning that went into each composition.

In Tenney’s theoretical essay on the chronological evolution of Ruggles
use of dissonance [31], he used simple statistical methods to explain Ruggles’
(and by extension, the Seegers’) melodic style. For example, he examined
how long it took, on average, for specific pitch-classes and intervals to be
repeated in a single melody. Tenney visualized these statistics in an unusual
way: as sets of functions over (chronological) time—years, not measures.
The article consists, for the most part, of graphs illustrating the statistical
evolution of Ruggles’ atonality along various axes. In general, the x-axis is
Ruggles’ compositional life itself. Tenney considered the data, such as the
ways in which the lengths of unrepeated pitch-classes increased over time
(and if in fact they did). Focusing on this specific aspect of Ruggles’ work
allowed Tenney to explain to himself, in part, what was going on in the
music.

In the two decades that followed that paper, Tenney widened his the-
oretical focus to include the music and ideas of what might be called the
1930s “American atonal school,” including Ruggles, Henry Cowell, Charles
and Ruth Crawford Seeger, and others. These American composers em-

1All Tenney scores referenced in this article are available from Smith Publications or
Frog Peak Music. Most of the works mentioned are recorded commercially as well.

2Tenney’s personal papers, however, include many descriptions and notes pertaining
to his pieces. Most of his music after about 1980 was written with the aid of a computer
(after a long hiatus in that respect), and the software itself is extant. In addition, Tenney
frequently described his compositional methods to his students.
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ployed their own pre-compositional principles distinct from, but as rigorous
as, European 12-tone composers of the same period. In the article on Rug-
gles, Tenney had described a way to statistically model an aspect of these
composers’ compositional intuitions. In the 1980s, he began to formally
and computationally integrate Seeger’s influential ideas of dissonant coun-
terpoint [26, 27] into his own music. What seems at first to be a series
of titular homages (in pieces like the Seegersongs, Diaphonic Studies, To
Weave (a meditation), and others) are in fact a complex, computer-based
transplantation of dissonant counterpoint into the fertile soil of his own aes-
thetic.

In each of these pieces, and several others, Tenney employed a probabilis-
tic technique which we call the dissonant counterpoint algorithm. Seegerian
dissonant counterpoint encompassed a wide range of musical parameters
(rhythm, tonality, intervallic use, meter, even form and orchestration). In
this paper, we focus on an algorithm Tenney devised to make a certain kind
of probabilistic selection (mostly pitch, but sometimes other things as well).
This algorithm which was in part motivated by Tenney’s interest in the ideas
of dissonant counterpoint. To our knowledge he never published more than
a cursory description of this technique [34]. One of the goals of our work is
to present the algorithm and explore some of its features in a mathematical
framework.

1.2 Statistical Feedback: Probability vs. statistics

“Along with backtracking, statistical feedback is probably the
most pervasive technique used by my composing programs. As
contrasted with random procedures which seek to create unpre-
dictability or lack of pattern, statistical feedback actively seeks to
bring a population of elements into conformity with a prescribed
distribution. The basic trick is to maintain statistics describing
how much each option has been used in the past and to bias the
decisions in favor of those options which currently fall farthest
short of their ideal representation.”

Charles Ames [3]

The dissonant counterpoint algorithm is a special case of what the com-
poser and theorist Charles Ames calls statistical feedback:3 the current out-

3For a good explanation of this see [5]. However, several of Ames’ other articles discuss
it as well, including [8, 7, 6, 4, 2, 1].
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come depends in some non-deterministic way upon previous outcomes.4 Ten-
ney’s algorithm is an elegant, compositionally-motivated solution to this
significant, if subtle compositional idea. Statistical feedback is another
form of reconciliation—that of compositional method with musical results—
and it has ramifications for any kind of computer- or anything-else-aided-
composition or art form. We first give a general (and mathematically simple)
introduction to this idea.

Imagine that we flip an unbiased coin N = 1000 times. We might end
up with 579 heads and 421 tails. This is close to the equal statistical mean
we might expect, want, or intend. With N = 10000 flips, we would do
better, in the sense that although the numbers of heads or tails will most
likely have larger differences from their expectation of 5000 than before, the
fraction of heads is likely to be closer to 1/2 than before. This illustrates
the law of large numbers: the average of N outcomes from an independent
and identically distributed (iid) random process converges (almost surely)
to its expected value as N increases. For example, baseball wisdom holds
that “any given team on any given day can beat any other given team.”
But because the number of games played in a season, 162, is a pretty large
number of trials, things generally (but not always) work out well for better
teams.

But what about a more local observation of a small number of trials, or
frame? For example, some run of ten flips might yield:

HTHHHHHTHT

This statistical frame contains, not surprisingly, something worse: seven Hs,
three T s.5 Nothing in our method suggests that we want that: the act of

4Ames [5], in discussing his early compositional use of this technique, describes it more
simply as “the trick of maintaining statistics detailing how much each option has been
used in the past, and of instituting decision-making processes which most greatly favor
those options whose statistics fall farthest behind their intended distribution.” Also see
[12], which surveys Ames’ work (up until 1992), and contains an alternate mathematical
formalization of statistical feedback (p. 35).

5And, from a more local, musical perspective, there are five Hs in a row, an example
of what Ames refers to as “heterogeneity” or “dispersion” [5], and Polansky refers to
as “clumping” [25, 21]. This is a slightly different, though related, problem to that of
monitoring the global statistics of a probability distribution, but the solution also may
employ statistical feedback. These terms refer to the difference between the following two,
equally well-distributed coin toss statistics:

HHHHHTTTTT and HTHTHTHTHT

5



Figure 1: A simple melody generated by the algorithm, using a linear growth
function (see next section), with n = 12 pitch elements lying in one octave.
(Accidentals carry through the measure unless explicitly canceled.)

flipping an unbiased coin most likely (but not unequivocally) suggests that
we desire a uniform distribution of outcomes. The random process creates
a disjunct between compositional intention and statistical outcome.

Composers have long used probability distributions, but have not often
worried about the conformance of observed statistics to probabilistic com-
position method over short time frames, what Ames calls “balance.”6 This
is perhaps due to the typically small populations used in a piece of music,
or because of a greater focus on method itself. Ames’ work suggests a vari-
ety of ways to gain compositional control over this relationship. Statistical
feedback “colors” element probabilities so that over shorter time frames,
the statistics (results) more closely correspond to the specified probabili-
ties. A scientist might call this variance reduction; we will analyze this in
Section 2.3.

Let’s return to the ten coin flips. We had seven Hs, three T s. Using
statistical feedback we can compensate so that our frame, of, say, twenty
trials, is statistically better. The obvious thing to do is positively bias the
probabilities of depauperate selections. For instance, we might now use for
the eleventh toss p(H) = .3 and p(T ) = .7, favoring the selection of a T .
To paraphrase Ames, we use the preceding statistics as an input to the
generating probability function.

6See, for example [8, 7, 5].
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2 The Dissonant Counterpoint Algorithm

2.1 Informal description

Tenney often discussed his interest in “models,” and his criteria were in how
the brain, the ear, the human accomplished something. His theories and
compositional algorithms generally placed a high priority on the success of
the theory or algorithm in elucidating some cognitive process.

The algorithm described here reflects this design goal in an efficient and
elegant way. A list of n values is maintained, one for each pitch element,
which will be interpreted as relative selection probabilities. We initialize
these to be all equal, then proceed as follows:

1. Select one element from the list randomly, using the values as relative
probabilities for choosing each element

2. Set the selected element’s value to zero

3. Increase the values of all the other elements in some deterministic way,
for instance by adding a constant

4. Repeat (go back to step 1)

The algorithm is deceptively simple. Note that once selected, an element
is temporarily removed from contention (its probability is zero). That el-
ement and all other unselected elements become more likely to be picked
(their probabilities climb) on successive trials or ‘time steps’7 of the algo-
rithm. The longer an element is not picked, the more likely it is that it
will be picked.8 Tenney’s use of this algorithm is an extension and ab-
straction of one particular aspect of the compositional technique of Ruggles
and/or Crawford Seeger, that of non-deterministic non-repetition of pitch-
class or interval-class. Fig. 1 provides the simplest possible example: only
pitch-classes are chosen by the algorithm. There is no explicit control of
intervallic distribution (which would, of course, be of concern to Ruggles or
Crawford Seeger). We give a more complex musical composition using this
basic algorithm in Fig. 2.

7We use ‘time steps’ to refer to repetitions of the algorithm; note that this does not
necessarily imply regular time intervals in a musical sense.

8Note that to fully “avoid repetitions of any tone until at least six progressions have
been made” (as suggested by Seeger), an element’s probability would have to remain at
zero for six trials after its choice. In Section 2.2, we show how this idea is incorporated
in the general description of the algorithm, using growth functions with a high power to
produce a similar result.
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Demonstration 1

polansky
9/09

for three bass instruments
space = time, notes held to any length, articulated in any way each player should impose their 

own dynamic curve, for example:
using any dynamics
for the extremes.

Figure 2: A short example piece, a trio for any three bass instruments. Each
instrument plays one of four pitch-classes, which are selected by the linear
version of the dissonant counterpoint algorithm. Durations are chosen by a
narrow Gaussian function whose varying mean follows a curve which begins
quickly, gets slower, and then speeds up again. A simple set of stochastic
functions determine the likelihood of octave displacement for each voice.
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Let’s say we run the algorithm for 100 time steps, and then re-run it
from the same initial values again for 100 time steps: due to the random-
ness in step 1 we will get different sequences (but with similar statistics).
There is an important difference between sequences produced in this way and
those produced by an ‘un-fedback’ random number generator with statisti-
cally independent (iid) trials. The statistical feedback reduces the sequence-
to-sequence fluctuations (i.e. variance about the expectation) in the total
number of occurrences of any given element over the 100 time steps, when
compared to that of the un-fedback case. In Section 2.3 we will also show
that, depending on the increment rule, the generated sequences exhibit dif-
ferent kinds of quasi-periodicity and “memory,” as measured by decay of
so-called autocorrelation, over durations much longer than the time to cycle
through the n elements.

2.2 Formal description

By constructing a slightly more general model than sketched above, we open
up an interesting parameter space varying from random to deterministic
processes, that includes some of Tenney’s work as special cases. For the
remainder of Section 2 we assume more mathematical background.

For each element i = 1, . . . , n we maintain a count ci describing the
number of time steps since that element was chosen. We define a single
growth function f : Z

+ → R
+ which acts on these counts to update the

relative selection probabilities following each trial. Usually we have f(0) = 0
(which forbids repeated elements), and f non-decreasing. We also weight
each element i = 1, . . . , n with a fixed positive number wi whose effect is
to bias the selection probabilities towards certain elements and away from
others. We now present a pseudocode which outputs a list {at}

T
t=1 containing

the element chosen at each timestep t = 1, . . . , T .

Dissonant Counterpoint Algorithm
input parameters: weight vector {wi}

n
i=1

, growth function f
initialize: ci = 1, i = 1, . . . , n
for timestep t = 1, . . . , T do

compute probabilities: pi =
wif(ci)

∑n
k=1

wkf(ck)
, i = 1, . . . , n

randomly choose j from the set 1, . . . , n with probabilities {pi}
n
i=1

update counts: cj = 0, and ci = ci + 1, i = 1, . . . , n, i 6= j.
store chosen note in the output list: at = j

end for
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Figure 3: Simulation of the dissonant counterpoint algorithm for the sim-
plest linear case (power α = 1), and uniform weights wi = 1 for i = 1, . . . , 4.
a) grayscale image showing counts ci for each element i = 1, . . . , 4 versus
time t horizontally, with white indicating zero and darker larger counts. b)
graph of elements selected at versus time t. c) distribution of N1(500), the
total number of occurrences of element 1 in a run of 500 time steps, shown
as a histogram over many such runs; shaded bars are for the dissonant
counterpoint algorithm, white bars are for random iid element sequences
with uniform distribution pi = 1/4 for i = 1, . . . , 4 (note the much wider
histogram).
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Figure 4: Illustration of three types of growth function f , depending on
choice of power law α in (1).

The normalizing sum in the denominator of the expression for pi merely en-
sures that the total probability is 1.

One simple but flexible form for the growth function is a power law,

f(c) = cα (1)

for some power α ≥ 0. For now, we also fix equal weights wi = 1 for all i.
Note that α = 1 gives the linear case where the relative selection probabilities
are the counts themselves. A typical evolution of the counts ci that form
the core of the algorithm, for this linear case, is shown in Fig. 3a. A typical
output sequence at is shown graphically in Fig. 3b (also see melody Fig. 1).
A large reduction in variance of element occurrence statistics, relative to
uniform random iid element sequences, is apparent in Fig. 3c.

Large powers, such as α > 5, strongly favor choosing the notes with
the largest counts, i.e. those which have not been selected for the longest
time. Conversely, taking the limit α → 0 from above gives a process which
chooses equally among the n − 1 notes other than the one just selected;
because of its relative simplicity this version allows rigorous mathematical
analysis (Section 2.4). Observe that α < 1 leads to concave functions, i.e.
with everywhere negative curvature (extending f to a function on the reals
we would have f ′′ < 0), and that α > 1 gives convex functions, positive
curvature (f ′′ > 0). These cases are illustrated by Fig. 4, and their output
is compared in the next section. In Fig. 5 we give a more complex musical
example in which the power α, and hence the sonic and rhythmic texture,
changes slowly during the piece.
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Figure 5: In this short quartet, 20 elements (percussion sounds) are selected
by the algorithm, and distributed in hocket fashion to the four instruments.
Durations are selected by the algorithm independently from a set of 9 dis-
tinct values. Durations and elements are selected independently, by different
power functions of the form (1). The power α is interpolated over the course
of the piece from 1 to some very high power (or vice versa). In the case of
durations, the exponent begins high (maximum correlation) and ends at 1
(little correlation). In the case of the percussion elements, the interpolation
goes in the other direction. An exponentially decreasing weight function is
used for durations, favoring smaller values.
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Figure 6: Dependence of periodic correlations on power law α. a) Occur-
rence of element 1 (black) for n = 4 elements, versus time 1 ≤ t ≤ T = 500
horizontally, for 100 values of α spanning logarithmically the vertical direc-
tion from low (concave) to high (convex). Results are similar for the other
elements. b) Standard deviation of the number of occurrences of element 1
in the run of length T = 500 (shown on a linear scale), as a function of α
on the same vertical axis as in a).
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2.3 Curvature of the growth function

In this section we investigate the effect of varying α, and introduce the
autocorrelation function. We will take the weights wi to be all equal. Figure
6a shows, for the case n = 4, sequences of algorithm outputs for a logarithmic
range of α values. (Behaviors for other numbers of elements are qualitatively
very similar.) The linear case, where α = 1, lies half-way up the figure. Note
that the larger α becomes, and consequently the more positive the curvature
of the growth function, the more temporal order (repetitive quasi-periodic
structure) there is in the occurrence of a given element. The sequences
become highly predictable, locking into one of the n! possible permutations
of the n elements for a long period of time, then moving to another closely
related permutation for another long period, and so forth. We may estimate9

this typical locked time period, when it, and n and α, are all large, as eα/n.
Thus, to achieve the same level of temporal order with more elements, α
would need to be increased in proportion to n.

What is the effect of varying α on the resultant statistics of a particular
element? The number of times the element i occurs in a time interval (run)
of length T is defined as

Ni(T ) := #{t : at = i, 1 ≤ t ≤ T} (2)

Ni(T ) varies for each run of the algorithm, and is therefore a random vari-
able, with mean (in the case of equal weights) T/n and variance Var[Ni(T )].

In Fig. 6b we show its standard deviation (Var[N1(T )])1/2 (indicating fluctu-
ation size) against α, again for n = 4 and T = 500. This was measured using
many thousand runs of this length. The standard deviation is large for low
powers (concave case), and decreases by roughly a factor of 10 for α = 10
(convex case). By comparison, the standard deviation for an iid uniform ran-
dom sequence is larger than any of these: since Ni(T ) then has a binomial
distribution with p = 1/n, it has standard deviation

√

Tp(1 − p) = 9.68 · · · .
The change of “rhythmic patterning” seen above can be quantified using

the autocorrelation in time. Consider the autocorrelation of the element
signal at, defined as,

Caa(τ) := lim
T→∞

1

T

∑T
t=1

(at − ā)(at+τ − ā)

Var[a]
(3)

where ā = (n + 1)/2 is the mean, and Var[a] is the variance of the element
signal. Fig. 7 shows Caa(τ) plotted for four types of growth function, now

9This is done by estimating the ratio between the selection probabilities of the elements
with n − 1 vs n − 2 counts as [(n − 1)/(n − 2)]α ≈ (1 + 1/n)α ≈ eα/n.
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Figure 7: Autocorrelation functions measured from the dissonant counter-
point algorithm (with n = 6 elements, and equal weights) for four choices
of growth function: three power laws, and an exponential law used in Sec-
tion 3.1.
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for n = 6. For α = 0 we obtain the max-1 rule discussed in the next sec-
tion: it has almost instantaneous decay of correlations, i.e. its “memory” is
very short. For α = 1, the linear model shows anti-correlation for the first
few time steps, and virtually no memory beyond τ = n. For high α (con-
vex growth function), the tail of the autocorrelation extends much further
(longer memory) up to τ = 50 and beyond. Periodic peaks which soften with
increasing τ also indicate quasi-periodic structure with a dominant period
n. For this n, the exponential function (9) discussed in Section 3.1 gives
correlation decay roughly similar to that of a power law model with α ≈ 4.

On a technical note, a well-known mathematical result from stochastic
processes (related to Einstein’s fluctuation-dissipation relation in physics
[11, Eq. (2.1)]) equates the rate of growth with T of Var[Ni(T )] to the
area under (or sum over τ of) the autocorrelation function graph.10 It is
surprising that the above results on variance of N1(T ) imply that for large
α the signed area under the autocorrelation graph is actually smaller than
for small α, despite the fact that the tails extend to much longer times τ .
It would be interesting to find an explanation for this.

2.4 Vanishing power: “max-1” version and the effect of weights

When α = 0, the growth function (1) becomes the function

f(c) =

{

0, c = 0
1, c = 1, 2, . . .

(4)

This max-1 rule is the linear algorithm truncated at a maximum value of 1.
As discussed above, its element statistics have a large variance and an almost
instant decay in the autocorrelation (i.e. almost no memory). The algorithm
chooses between all n−1 notes other than the current one, weighted only by
their corresponding weights wi. For convenience, in this section we assume
these weights have been normalized, thus

n
∑

i=1

wi = 1 (5)

Since no account is taken of the number of counts each eligible note has
accumulated, the algorithm becomes what is known as a Markov chain [28],

10Strictly speaking, the relevant area is
P

τ∈Z
Cii(τ ) where Cii is the autocorrelation of

the binary signal which is 1 when element i is selected, and 0 when any other element is
chosen. We have checked that Cii(τ ) and Caa(τ ) look very similar.

16



with no explicit memory of anything other than the current selected element.
Its n-by-n transition matrix M then has nonnegative elements

Mij =

{

wi
1−wj

, i 6= j

0, i = j
(6)

which give the probability of element i being selected given that the current
element is j. By using (5) one may verify the required column sum rule
∑

i Mij = 1,∀j.
Recall that weights wi were included in the algorithm to give long-term

bias towards various elements. So, how do the long-term frequencies of ele-
ments depend on these weights? The relationship is not trivial: frequencies
are not strictly proportional to weights. The relative frequencies tend to the
Markov chain’s so-called steady-state probability distribution p := {pi}

n
i=1

(whose components pi are normalized
∑n

i=1
pi = 1), for which we can solve11

as follows.

Theorem 1 The max-1 rule with normalized weights {wi}
n
i=1 and Markov

transition matrix (6) has a unique steady state distribution given by

pi =
wi(1 − wi)

∑n
j=1

wj(1 − wj)
, i = 1, . . . , n (7)

Proof: Consider a candidate distribution vector v ∈ R
n \ 0. We multiply v

by a non-zero scalar to give it the more convenient weighted normalization
∑n

i=1
vi/(1 −wi) = 1. Using this and (6) we compute the ith component of

(M − I)v as follows,

(Mv − v)i = wi

∑

j 6=i

vj

1 − wj
− vi = wi

(

1 −
vi

1 − wi

)

− vi

= wi −
1

1 − wi
vi

The condition that this vanish for all i = 1, . . . , n, in other words vi =
wi(1−wi), is equivalent to the statement that v is an eigenvector of M with
eigenvalue 1 and therefore an (unnormalized) steady state vector. Hence the
eigenvector is unique up to a scalar multiple, i.e. this eigenvalue is simple.

11Some intuition as to why an analytic solution is possible here is that M may be
factored as the product of three simple matrices: M = diag{wi}(1− I) diag{(1−wi)

−1},
where 1 is the n-by-n matrix with all entries 1.
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Finally, normalizing (in the conventional sense) this formula for vi gives the
expression (7). �

In other words, with weighted versions of the algorithm, it turns out
that statistical differences in element frequencies are less pronounced than
the corresponding differences in weights.

How frequently may one of the n elements occur? Even if we push one
of the weights towards 1 at the expense of the others (which must then
approach zero), the corresponding element may occur no more than 1/2 of
the time. Intuitively, this follows since repeated elements are forbidden, so
one element can be chosen at most every other timestep. Rigorously, we
have the following.

Theorem 2 Let n ≥ 3. Then the max-1 rule with positive weights {wi}
n
i=1

has a steady state distribution whose components obey pi < 1/2 for i =
1, . . . , n.

Proof: Fixing i, we have, using the fact that 1 − wj > wi for all j 6= i,

n
∑

j=1

wj(1 − wj) = wi(1 − wi) +
∑

j 6=i

wj(1 − wj)

> wi(1 − wi) + wi

∑

j 6=i

wj

The result then follows from
∑

j 6=i wj = 1 − wi and Theorem 1. �

For the case n = 2, the possibility pi = 1/2 must also be allowed. The
result carries over to general growth functions f with f(0) = 0, again for
the simple reason that repetition is excluded. If, however, the “drop-down”
value f(0) (the value to which a selected element is reset prior to the next
selection) is greater than zero, repetition becomes possible. In some of Ten-
ney’s music (such as the piece about which he first published a description
of this algorithm, Changes), he specifies a “very small” drop-down value (see
Section 3).

Finally, we note that a wide variety of complex behaviors can result from
combining the convex (large-α) power law with unequal weights. This seems
to result in a competition between the tendency for locked-in permutations of
all n elements due to the large α, and the strong bias for heavily-weighted
elements. For example, Fig. 8 illustrates a selection process among n =
12 elements, with weights strongly biased towards “high” elements. The
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Figure 8: Grayscale image of counting function produced for the power-law
with α = 6 and n = 12 pitch-classes, with highly unequal weights wi = i5.
T = 500 time steps are shown. This is discussed in Sec. 2.4.

resulting behavior consists of disordered clusters of arpeggiated sequences.
It is striking that even with such extremely unequal weights (element 12 is
125 = 248832 times more preferred than element 1), element 12 only occurs
a few times more often than element 1.

3 Examples from Tenney’s Work

Tenney’s interest in the ideas of dissonant counterpoint dates back to the
1950s, as evidenced by pieces like Seeds (for ensemble) (1956; revised 1961)
and Monody (for solo clarinet) (1959) [18]. These pieces, while through-
composed without the use of a computer, show his nascent fascination
with achieving what he later refers to—with respect to the early electronic
works—as “variety”:

If I had to name a single attribute of music that has been more
essential to my esthetic than any other, it would be variety.
It was to achieve greater variety that I began to use random
selection procedures in the Noise Study (more than from any
philosophical interest in indeterminacy for its own sake), and
the very frequent use of random number generation in all my
composing programs has been to this same end. [30] (p. 40)

Tenney began using the computer for his compositions in 1961. These
works, produced at Bell Laboratories, are among the first examples of com-
puter music. Most dealt primarily with both the new possibilities of com-
puter synthesis and his ideas of hierarchical temporal gestalt formation
[38, 29]. Yet he recognized that randomly generated events without memory
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of prior events would not produce the variety (Cowell: non-tautology) that
he wanted.

While the early computer pieces predate a formalization of the dissonant
counterpoint algorithm, the “seeds” of this idea are clear in his description
of an approach to pitch selection:

Another problem arose with this [Stochastic String] quartet which
has led to changes in my thinking and my ways of working, and
may be of interest here. Since my earliest instrumental music
(“Seeds,” in 1956), I have tended to avoid repetitions of the
same pitch or any of its octaves before most of the other pitches
in the scale of 12 had been sounded. This practice derives not
only from Schoenberg and Webern, and 12-tone or later serial
methods, but may be seen in much of the important music of
the century (Varèse, Ruggles, etc).

In the programs for both the Quartet and the Dialogue, steps
were taken to avoid such pitch-repetitions, even though this took
time, and was not always effective (involving a process of recal-
culation with a new random number, when such a repetition did
occur, and this process could not continue indefinitely). In the
quartet, a certain amount of editing was done, during transcrip-
tion, to satisfy this objective when the computer had failed. [30]

Tenney continued to explore this process throughout his life, and began
using the algorithm described in this paper as early as the 1980s. The first
published description of it occurs in a sentence in his article on Changes
(1985):

Just after a pitch is chosen for an element, [the probability of]
that pitch is reduced to a very small value, and then increased
step by step, with the generation of each succeeding element (at
any other pitch), until it is again equal to 1.0. The result of this
procedure is that the immediate recurrence of a given pitch is
made highly unlikely (although not impossible). [34] (p. 82).

Note that the above description seems to describe a linear model with a
small positive “drop-down” value, and truncation, i.e.

f(c) = min[ǫ + ac, 1] (8)

for a > 0 and some small ǫ > 0. The fact that ǫ is positive allows pitches to
be repeated.
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From the composition of Changes in 1985 until 1995, Tenney wrote a
number of computer-generated pieces, including Road to Ubud (1986; revised
2001), Rune (1988), Pika-Don (“flash-boom”) (1991) and Stream (1991),
each of which warrant further investigation with respect to the use of the
dissonant counterpoint algorithm. However, many of Tenney’s works after
1995 implement the dissonant counterpoint algorithm explicitly including:
Spectrum 1 – 8 (1995 – 2001); Diaphonic Study (1997); Diaphonic Toccata
(1997); Diaphonic Trio (1997); Seegersong #1 and #2 (1999); Prelude and
Toccata (2001); To Weave (a meditation) (2003); Panacousticon (2005); and
Arbor Vitae (2006).12

At a certain point, the dissonant counterpoint algorithm simply became
Tenney’s de facto pseudo-random element chooser. He used it to determine
pitches (Seegersongs and others), timbre/instrumentation (Spectrum pieces,
Panacousticon), and register (To Weave), and even movement through har-
monic space (Arbor Vitae). Early drafts of computer programs written to
generate Spectrum 6 – 8 are labeled with the word diaphonic. Tenney used
that term to refer to most of his computer code after about 1995. Specific
titles notwithstanding, he may have considered many or all of these works
as “diaphonic” studies after Ruth Crawford Seeger’s four studies from the
early 1930s (taking their name from Charles Seeger’s earlier use of the term
to mean, roughly: “sounding apart” [27]). Over time, the algorithm’s role
seems to change from that of a principal formal determinant (as in the
Seegersongs and To Weave) to an embedded, deep-level selection technique
which was combined with and modulated by larger formal processes.

3.1 Seegersongs

Seegersong #1 and #2 are perhaps the clearest examples of Tenney’s use of
the algorithm. These pieces exemplify Tenney’s integration of the algorithm
with larger formal concerns. Both Seegersongs used the convex growth func-
tion that Tenney most commonly employed in these later works, in this case
by repeated doubling, thus

f(c) = 2c (9)

Seegersong #1 and #2 explicitly model Ruth Crawford Seeger’s ap-
proach to dissonant counterpoint in the avoidance of pitch-class repetition.
However, they also suggest other aspects of her work, such as the technique
of “phrase structure” discussed by Charles Seeger in the “Manual...” [26]

12For these latter pieces (unlike those between 1985–1995), the computer code is avail-
able. Other pieces may use the algorithm in some way that is not yet known.
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and exemplified by Ruth Crawford Seeger in Piano Study in Mixed Accents
(1930/31) as well as by Johanna Beyer in her two solo clarinet suites (1932)
[10, 9, 22]. As with Seeger’s Piano Study in Mixed Accents, both Tenney’s
Seegersongs consist of delimited phrases (or, in Tenney’s terminology, gestalt
sequences). Each phrase has an associated ascending or descending pitch-
trajectory over some duration. This is achieved using a generalization of
the dissonant counterpoint algorithm of Section 2.2, in which the weights wi

are allowed to change with time in a prescribed fashion, and therefore are
labeled wi,t. That is, the probabilities in the above algorithm are computed
according to

pi =
wi,tf(ci)

∑n
k=1

wk,tf(ck)
, i = 1, . . . , n (10)

Tenney used weights wi,t which decrease linearly with pitch distance from
a pitch center, giving a triangularly-shaped weight vector which reaches
zero a pitch distance of a tritone from the center. The center itself moves
in time in a piecewise linear fashion, with each linear trajectory being a
phrase. The resulting weights are shown as grayscale density in Fig. 9. The
moving weights are used by the dissonant counterpoint algorithm to follow
the desired registral trajectory. The interpolation points defining the linear
trajectories are themselves chosen randomly within a slowly-changing pitch
range illustrated by the gray region in Fig. 10b.

The large scale form of Tenney’s Seegersongs resembles Ruth Crawford
Seeger’s Piano Study in Mixed Accents, in which the registral profile similarly
ascends and then descends (Fig. 10a). However, in Tenney’s re-imagining,
the range’s upper limit follows the positive part of a smoothly distorted
cosine function peaking at the golden mean division of the piece’s duration.
The lower limit of the pitch range remains constant (see Fig. 10b).

3.2 The Spectrum pieces

The pitches in the Spectrum series are derived from a harmonic series with
a fixed fundamental [15]. In these pieces, Tenney also used the algorithm
to determine non-pitch parameters. In the Spectrum works that use per-
cussion, the algorithm selects, for those instruments, from a set of pitched
and unpitched sounds. When the algorithm selects a pitch that cannot be
played accurately by a pitched percussion instrument, a number is returned
indicating an unpitched percussion sound. In this case, “accurate” is defined
as a pitch in equal-temperament that is more than 5 cents from its cognate
harmonic. In the instructions, Tenney states that “numbers in place of note-
heads, denote non-pitched sounds or instruments to be freely chosen by the
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Figure 9: Seegersong #2 excerpt showing pitch profile (solid lines) and dy-
namic weights wi,t (grey density: white is zero and darker larger positive
values) used in the dissonant counterpoint algorithm (see text for how wi,t

is generated).

player” [36].
In the Spectrum pieces with piano and/or harp, those fixed-pitch in-

struments are retuned and thus not subject to the process described above.
However, because these instruments are polyphonic, the counts for more
than one pitch (in the selection process) are reset to zero simultaneously.
That is, all the notes for the chord are treated as having been selected. Ten-
ney chooses the number of chord tones stochastically, based on a function
of upper and lower density limits over time. All other parameters of the
Spectrum pieces such as duration, loudness and pitch (which integrates the
dissonant counterpoint algorithm) are determined in similar ways (for more
on parametric profiles see [29]).

For the note selection algorithm, the Spectrum pieces use a growth func-
tion similar to that of the Seegersongs, but with a larger base for exponential
growth:

f(c) = 4c (11)

Each part in each Spectrum piece is generated individually. Since the larger
the base, the more convex the function (this being similar to the effect
of a larger power explored in Section 2.3), note selection will tend to be
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Figure 10: Pitch profiles of a) Ruth Crawford Seeger’s Piano Study in Mixed
Accents (less than a minute and a half long, about a 6 octave range), com-
pared against b) Tenney’s Seegersong #2 (12 minutes long, about a 3 octave
range). In each case time is horizontal (seconds) and pitch vertical (semi-
tones, where 60 is middle C). The gray region shows the time-dependent
pitch range used; see text for discussion of the algorithms. In b) the upper
bound is proportional to 25 − 13 cos[2π(t/tmax)

1.44], and the vertical lines
show the start and end of the excerpt in Fig. 9.
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more correlated than in the Seegersongs. Perhaps, because there is a large
variety of instruments in the Spectrum pieces, Tenney might have used the
higher base in order to give individual voices a more coherent, even melodic
character.

3.3 To Weave (a meditation)

In To Weave (a meditation), for solo piano, the selection algorithm deter-
mines not only pitch-class but also register, or what can be called “voice.”
Three such voices are used in the piano part, with the max-1 algorithm of
Section 2.4.

The algorithm determines voices note by note, where a voice is defined
as one of three registers (low, middle or high). Each voice is thus a possible
element for selection. For each note, the two voices not selected for the
previous note become equally probable and the selected voice’s probability
is set to 0. In other words, if a pitch occurs in the low register, then the next
pitch must occur within one of the two other registers (middle or high). The
stochastic pitch sequence is woven “non-tautologically” into a three-voice
virtual polyphony (thus the titular pun on the name of the pianist, Eve
Egoyan, for whom it was written).

The growth function (2c) is the same as the Seegersongs, but in To Weave
pitch-class probabilities are incremented both globally and locally (for each
individual voice). These two values are multiplied to determine the pitch-
class probabilities ultimately used to select a pitch-class. Once selected, that
pitch-class is placed within the range of the currently selected voice. As in
the Seegersongs, the ranges of the three voices change over time, peaking at
the golden mean point of the piece. According to Tenney:

Waves for Eve, wave upon wave, little waves on bigger waves,
et cetera, but precisely calibrated to peak at the phi-point of
the golden ratio. To weave: a three-voice polyphonic texture in
dissonant counterpoint, with a respectful nod in the direction of
Carl Ruggles and Ruth Crawford Seeger. [37]

3.4 Panacousticon

In Panacousticon for orchestra, the algorithm selects both pitch-class and
instrument. As in the Spectrum pieces, the pitches are derived from the
harmonic series on one fundamental. Both implementations of the algorithm
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Figure 11: To Weave (a meditation) score excerpt.

(for pitch-class and instrumentation) use linear growth functions with an
upper bound, of the form

f(c) = min[c, 5] (12)

Thus after an element is chosen, its probability reaches a maximum if it is
not chosen within the next five selections.13 For each note, the dissonant
counterpoint algorithm is combined with another procedure that determines
the register of the chosen pitch-class and which instruments are available to
play the pitches (that is, the instruments that are not already sounding and
whose range covers the determined pitch).

3.5 Arbor Vitae

In his last work, Arbor Vitae for string quartet, Tenney uses the algorithm
to explore complex harmonic spaces using “harmonics of harmonics,” in
perhaps his most complex and unusual usage of this selection method. The
pitch material, or the harmonic space (see, for example [33]) of Arbor Vitae

13Generally, the effect of such an upper bound on f is to equalize the probabilities of all
elements not chosen within the upper bound number of time steps. This may be viewed as
negative curvature as in Fig. 4, and it serves to reduce the already small autocorrelation
of the resulting sequence at large times. An upper bound of 1 would be the same as a
power law α = 0, and is the max-1 rule of Section 2.4.
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is complex. However, ratios are generated via reasonably simple procedures,
in a manner which recalls Lou Harrison’s idea of “free style” just intonation
(such as in A Phrase from Arion’s Leap, Symfony in Free Style, and At the
Tomb of Charles Ives; see [16, 23, 19, 20, 17]).

The title is a metaphor for the work’s harmonic structure [40]. The
dissonant counterpoint algorithm first calculates roots, which are harmonics
of a low B-flat. These are treated as temporary, phantom fundamentals.
Next, the algorithm calculates branches which terminate in the pitch-classes
for sounding tones. Lower harmonics are biased for root calculation by
assigning initial probabilities (pi proportional to 1√

i
where i is the harmonic

number of the possible root).14 The growth function depends on harmonic
number i. The selection algorithm can be summarized as that of Section 2.2
but with the probabilities computed via

pi =
fi(ci)

∑n
k=1

fk(ck)
(13)

where fi(c) now depends both on element i and counts c, as follows,

fi(c) =







0, c = 0

i−1/2, c = 1

i−1/4, c > 1

(14)

Initial counts ci are all set to 1, and counts are only updated for elements
that have been selected at least once.

For branch selection, the set of possible elements are the primes — 3,
5, 7, 11 — of a given root. Due to the use of negative powers, the growth
function becomes a kind of harmonic distance measure (with higher primes
less favored). This tendency towards “consonance” is reflected in the bias
towards selected roots which are closer to fundamentals, as well as in selected
branches which are closer to those roots. Tenney seems to be imposing a kind
of natural evolutionary “drag” on the tendency of the harmonic material in
the piece to become too strongly dissassociated with its fundamentals. This
ensures a kind of tonality, albeit a sophisticated and ever-changing one.

In other ways, compositional procedures of Arbor Vitae resemble those
of Seegersongs, Panacousticon, To Weave (a meditation), and the Spectrum
pieces. Final pitch determinations use time-variant profiles of pitch ranges.
Instrument selection, as in some of the other pieces, is performed by the dis-
sonant counterpoint algorithm. As in Panacousticon, the software first de-
termines whether an instrument’s range can accomodate the selected pitch.

14In fact, rather than handling counts as in Section 2.2, Tenney directly updated relative
probabilities pi, normalizing them to sum to 1 whenever random selection was needed.
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In contrast to To Weave (a meditation), the growth function for instrument
selection in Arbor Vitae has f(0) = f(1) = 0: in general no instrument
may be chosen until two other instruments have played. For a more detailed
discussion of this piece, see [5].

4 Conclusion

The dissonant counterpoint algorithm is, in some respects, just a simple
method for choosing from a set of elements to give a random sequence with
certain behaviors. In other respects, it is an ingenious way of marrying
both an important historical style (that of Ruggles/Seeger/Cowell “disso-
nant counterpoint,” or “diaphony”) with a more modern and sophisticated,
but poorly understood set of ideas from computer-aided music composition
(Ames’ statistical feedback). The algorithm elegantly embeds the latter idea
in a manner characteristic of Tenney’s interest in the idea of a model (a
method that reflects how humans do or hear something).

We have analyzed the algorithm mathematically, explaining how a con-
vex/concave choice of the growth function controls the correlation in time
(rate of memory loss) of the sequence. This can lead to surprising musical
effects, such as quasi-rhythmic permutations with long-range order. We in-
cluded a formula explaining how weights determine the statistical selection
frequencies (in the case of the max-1 growth function). We illustrated a
few of the algorithm’s wide variety of musical possibilities with two exam-
ple compositions. Combined with our discussion of the algorithm’s role in
Tenney’s work, this work suggests ways in which it might be used further,
in experimental and musical contexts.

For example, none of the versions of the algorithm presented above con-
sider an “ordered” set of elements in which the proximity of one to the other
is significant. Simple examples of this are pitch-sets, registral values, du-
rations, and so on. One might want to select from meaningful regions of
the set of elements (e.g. “shorter durations,” “higher pitches”). In a simple
extension to the algorithm, one of the authors (Polansky) has implemented
what he calls “gravity”: not only is the chosen element’s probability af-
fected post-selection, but so are the probabilities of surrounding elements.
By defining the shape of the “gravitation” (the width of the effect, the slope
of the effect curves, whether the “gravity well” is negative or positive) one
can increase or decrease the probabilities of neighborhood selection in a va-
riety of ways. Polansky has used this extensively in his piece 22 Sounds (for
percussion quartet) [24].
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The algorithm, in its simplest form, is meant to ensure a kind of maxi-
mal variety with a minimum amount of computation. However, by varying
explicit parameters, it can produce, in both predictable and novel ways,
a continuum of behaviors from completely non-deterministic to completely
deterministic.
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A Matlab/Octave code examples

Here we give code that we use to simulate the dissonant counterpoint al-
gorithm and collect statistics. It may be run with MATLAB [39] or its
free alternative Octave [14]. To measure autocorrelation accurately we need
many (e.g. 105) samples. We generate N realizations of length T simulta-
neously, since this is equivalent to, but (due to vectorization) much more
efficient than, generating a single long realization of length NT . This also
allows us to see ‘vertical’ correlations between different runs launched with
the same initial conditions (as in Fig. 6).

n = 12; % # notes or elements

N = 500; % # simultaneous realizations

T = 500; % # timesteps

f = @(c) c.^4; % fourth power law growth function (convex)

w = ones(n,1); % selection bias weights (column vector)

a = zeros(N,T); % histories of which notes chosen

c = ones(n,N,T+1); % histories of counts for all notes

for t=1:T

fc = repmat(w, [1 N]) .* f(c(:,:,t)); % feed c thru func & bias

p = fc ./ repmat(sum(fc,1), [n 1]); % selection probabilities

cum = cumsum(p,1); % cumulative probs

x = rand(1,N); % random iid in [0,1]

a(:,t) = sum(repmat(x, [n 1]) > cum, 1) + 1; % chosen notes

c(:,:,t+1) = c(:,:,t) + 1; % increment counts
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c(sub2ind(size(c), a(:,t)’, 1:N, (t+1)*ones(1,N))) = 0; % reset chosen

end

figure; imagesc(a); colorbar; xlabel(’t’); ylabel(’run’); title(’notes’);

To compute autocorrelation of the element sequences a we use,

M = 100; % max correlation time to explore

ma = mean(a(:)); zma = a - ma; ca = zeros(1,M+1); l = 1:(T-M);

for t=0:M, ca(t+1) = mean(mean(zma(:,l).*zma(:,l+t))); end

figure; plot(0:M, ca./ca(1), ’+-’); xlabel(’\tau’), ylabel(’C_a(\tau)’);

Finally, to generate an audio file output of realization number r we use,

dt = 0.125; fs = 44100; Tsong = 60; % Tsong: song length (sec)

fnot = 440*2.^((0:n-1)/n); % list of note freqs (Hz)

t = single(1:floor(fs*Tsong)-1)/fs; % list of time ordinates

wavwrite(0.9*sin(2*pi*fnot(a(r,1+floor(t/dt))).*t)’,fs,16,’out.wav’);
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